在工作目录下建立/pic文件夹放入测试图片,建立/positive文件夹,放入自己的训练数据(我使用的是自己的相片中截获好的头像)建立list.txt,在里面写入pic/文件名以回车隔开,即可。#define CV_NO_BACKWARD_COMPATIBILITY#include "cv.h"#include "highgui.h
转载 2023-05-09 17:52:31
667阅读
运用Opencv实现人脸的检测和识别是非常方便的,也比较常用。对于人脸检测可以用Opencv自带的分类器实现,而人脸识别需要自建训练分类器,以及收集人脸数据。本文重点讲讲人脸数据的训练以及人脸识别的实现,识别功能的实现也结合了MFC这个基础类库,界面更加美观。1.人脸数据训练关于数据的训练以及识别的教程可以参考博客:,在这篇博文里作者已经把流程说的很详细了,本文参照这个流程实现了人脸识别。&nbs
代码下载:基于PCA(主成分分析)的人脸识别人脸识别是一个有监督学习过程,首先利用训练集构造一个人脸模型,然后将测试集与训练集进行匹配,找到与之对应的训练集头像。最容易的方式是直接利用欧式距离计算测试集的每一幅图像与训练集的每一幅图像的距离,然后选择距离最近的图像作为识别的结果。这种直接计算距离的方式直观,但是有一个非常大的缺陷—计算量太大。如果每幅图像大小为100*100,训练集大小1000,则识别测试集中的一幅图像就需要1000*100*100的计算量,当测试集很大时,识别速度非常缓慢。解决上述问题的一个途径是对图像进行降维,通过只保留某些关键像素可以使识别速度大大提升。降维的一个方法即是
转载 2013-09-01 19:49:00
683阅读
2评论
所需库import cv2 # 用于获取视频、图像变换、标记 # cv2.face模块 用于人脸数据训练,人脸匹配 """ 注意1:cv2有两个包 一个为opencv-python,# opencv主仓库的模块 一个为opencv-contrib-python,# main模块和contrib模块 注意2:face模块在opencv-contrib-python中,需要单独安装。 注
转载 2024-04-01 19:17:29
164阅读
人脸识别技术是基于人的脸部特征,对输入的人脸图象或者视频流 . 首先判断其是否存在人脸 , 如果存在人脸,则进一步的
原创 2023-10-10 09:10:58
330阅读
在实际应用中,我们的图像常常会被噪声腐蚀,这些噪声或是镜头上的灰尘或水滴,或是旧照片的划痕,或者是图像遭到人为的涂画(比如马赛克)或者图像的部分本身已经损坏。如果我们想让这些受到破坏的额图片尽可能恢复到原样,Opencv能帮我们做到吗?OpenCV真的有这个妙手回春的功能!别以为图像修补的工作只能用PS或者美图秀秀那些软件去做,其实由程序员自己写代码去做更加高效!图像修复技术的原理是什么呢?简而言
  作者说的很详细,可以参考作者博客,搭建环境参考我的上一博客。  这里只说一些自己的理解,和解决遇到的问题,有想在Windows下实现人脸识别并且匹配的,可以按照我的步骤一步步解决问题。经测试真实有效,不好用不要钱!- -!二、分析想要看懂代码并且自己能够修改,你需要了解的几个知识1:openCv调用图片,或者视频 。      构建模型和模型训练(问题开
首先,基于上一步的工作:想基于自己编译的opencv+vs2010可移植项目做一些简单工作,于是尝试做一个简单的人脸识别的实现。实现流程如下:下载数据集并制作测试数据集,并生成CSV文件;训练模型,基于opencv自带的识别算法。导入训练模型,实现在视频中实时识别人脸。 实现步骤:1.下载数据集2.制作测试数据集,即待测人脸数据集。这里需要去opencv官网下载的源码中找到:opencv
转载 2024-04-28 11:15:50
93阅读
Python 实现人脸识别技术人脸识别技术在现代社会中被广泛应用,如手机解锁、安防监控等领域。Python作为一门易于上手的编程语言,也可以用来实现人脸识别技术。人脸识别的基本原理人脸识别系统的基本流程包括:人脸检测:通过计算机视觉算法从一个图像中识别出一个或多个面部区域。面部对齐:调整脸部区域的位置和姿态,使所有脸部数据具有相同的位置和大小。特征提取:使用机器学习算法从面部图像中提取面部的特征信
本文实例讲述了Python基于OpenCV库Adaboost实现人脸识别功能。分享给大家供大家参考,具体如下:以前用Matlab写神经网络的面部眼镜识别算法,研究算法逻辑,采集大量训练数据,迭代,计算各感知器的系数。。。相当之麻烦~而现在运用调用pythonOpenCV库Adaboost算法,无需知道算法逻辑,无需进行模型训练,人脸识别变得相当之简单了。需要用到的库是opencv(open sou
       在OpenCV的“photo.hpp”中定义了一个inpaint函数,可以用来实现图像的修复和复原功能,inpaint函数的原型如下:void inpaint( InputArray src, InputArray inpaintMask, OutputArray dst, double inpaintRadius, int flags );第
转载 2024-02-20 12:35:23
70阅读
      首先我们知道opencv里面也有关于图像复原的函数-----cvInpaint      在cv里面找到:enum { INPAINT_NS=CV_INPAINT_NS, INPAINT_TELEA=CV_INPAINT_TELEA }; CV_EXPORTS void inpaint( const Mat& src
 PCA主要代码 function [pcaA V] = fastPCA( A, k ) % 快速PCA % % 输入:A --- 样本矩阵,每行为一个样本 % k --- 降维至 k 维 % % 输出:pcaA --- 降维后的 k 维样本特征向量组成的矩阵,每行一个样本,列数 k 为降维后的样本特征维数 % V --- 主成分向量 [r c] = size
原创 2013-11-27 21:27:00
1470阅读
import cv2import numpy as npimport osfrom sklearn import neighborsimport tkinterfrom tkinter import filedialog#读取人脸数据库#准备训练数据'''def openfile(): r = filedialog.askopenfilename(title='选择要识别...
原创 2021-06-18 15:54:06
642阅读
为了
计算机视觉基础-图像处理(上)-Task02 几何变换2.1 简介该部分将对基本的几何变换进行学习,几何变换的原理大多都是相似,只是变换矩阵不同,因此,我们以最常用的平移和旋转为例进行学习。在深度学习领域,我们常用平移、旋转、镜像等操作进行数据增广;在传统CV领域,由于某些拍摄角度的问题,我们需要对图像进行矫正处理,而几何变换正是这个处理过程的基础,因此了解和学习几何变换也是有必要的。 这次我们带
PCA--主成分分析,主要用在降维上。具体原理讲解的很多,在这里就不多说了。具体可见:http://blog.csdn.net/xiaojidan2011/article/details/11595869 PCA主要计算步骤如下:1、事先把每个样本归一化,把原始数据中每个样本用一个向量表示,然后把所有样本组合起来构成一个矩阵。2、求该矩阵的协防差矩阵3、求步骤2中得到的协方差矩阵的特征值和特征向量
原创 2015-03-09 13:01:44
10000+阅读
实现以下功能: 交互式对话框:请选择要执行的动作 人脸采集:打开摄像头,采集照片,保存训练模型人脸识别: 打开摄像头,采集照片,预识别;输入图像的路径,图像识别输出结果: 找到匹配的对象,输出名字;未找到匹配的对象,提示:人脸采集并保存训练模型 程序 /* 交互式对话框:请选择要执行的动作 1.人脸采集: 打开摄像头,采集照片,保存
import cv2 import sys from PIL import Image def CatchUsbVideo(window_name, camera_idx): cv2.namedWindow(window_name) # 视频来源,可以来自一段已存好的视频,也可以直接来自USB摄像头 cap = cv2.VideoCapture(camera_idx)
转载 2023-06-14 14:28:48
542阅读
文章目录ORB算法视频读写图像人脸识别摄像头实时人脸检测 ORB算法orb算法结合了Fast和Brief算法,提出了构造金字塔,为Fast特征点添加了方向,从而使得关键点具有了尺度不变性和旋转不变性。# orb算法结合了Fast和Brief算法,提出了构造金字塔,为Fast特征点添加了方向,从而使得关键点具有了尺度不变性和旋转不变性。 import numpy as np import
  • 1
  • 2
  • 3
  • 4
  • 5