# 教你如何实现“python opencv mser” ## 步骤概述 下面是实现“python opencv mser”功能的整体流程: ```mermaid erDiagram 理解需求 --> 下载安装opencv --> 编写代码 --> 运行程序 --> 调试优化 ``` ## 具体步骤及代码示例 ### 1. 理解需求 在开始之前,首先要明确自己的目标,了解MSE
原创 2024-03-22 03:48:32
34阅读
1.算法描述自然场景下的文本检测是自然场景图像信息提取的基础,在车牌识别、实时翻译、图像检索等领域具有广泛的应用价值及研究意义。基于连通区域的方法是自然场景文本检测中最为常见的方法,其中最大稳定极值区域(Maximally Stable Extremal Regions,MSER)算法和颜色聚类算法都有着广泛的应用。 MSER = Maximally Stable Extremal Re
# Python 区域选择 MSER 算法实现指南 ## 引言 在计算机视觉领域,区域选择算法经常被用来提取图像中的重要特征。MSER(Maximally Stable Extremal Regions)是一种有效的区域检测算法。本文将向你介绍如何在 Python 中实现 MSER 算法,帮助你了解其操作的整个流程并实现代码。 ## 工作流程 在实现 MSER 算法之前,我们需要明确各个步骤以
原创 9月前
119阅读
MSER最稳定极值区域源码分析 最稳定极值区域介绍如把灰度图看成高低起伏的地形图,其中灰度值看成海平面高度的话,MSER的作用就是在灰度图中找到符合条件的坑洼。条件为坑的最小高度,坑的大小,坑的倾斜程度,坑中如果已有小坑时大坑与小坑的变化率。上图展示了几种不同的坑洼,根据最小高度,大小,倾斜程度这些条件的不同,选择的坑也就不同。 上图展示了最后一个条件,大坑套小坑的情况。根据条件的
转载 2024-10-23 10:59:55
46阅读
概念:图像匹配是对两张相似的照片(不同角度,不同光照,不同大小,不同放射等)进行关键点的寻找连接。和“找不同”游戏有着相似的步骤,先观察两张图像的特征,再根据经验进行配对。只不过图像匹配找的是相同,“找不同”游戏找的是不同。步骤:1)提取图像的特征点 2)对图像特征点进行描述(包含特征点的位置,尺度,方向等信息) 3)计算两张图像的候选特征点的距离,选择相似度高的点进行匹配综述:1)Image M
K 近邻算法是最简单的机器学习算法之一,主要用于将对象划分到已知类中,在生活中被广泛使用。例如,教练要选拔一批长跑运动员,如何选拔呢?他使用的可能就是K 近邻算法,会选择个子高、腿长、体重轻,膝、踝关节围度小,跟腱明显,足弓较大者作为候选人。他会觉得这样的孩子有运动员的潜质,或者说这些孩子的特征和运动员的特征很接近。 OpenCV学习笔记(十五)1. 理论基础2. 计算2.1 归一化2.2 距离计
稳态误差是控制系统的一个非常重要的指标。按字面意思理解,就是系统到达稳定状态后存在的误差,也就是说系统本身是稳定的才可以求解稳态误差。教材上我们只考虑系统原理性误差,暂时不考虑由于外界干扰及非线性因素引起的误差。稳态误差一定存在吗? 从原理上讲,是存在无差系统的。但是无差系统是相对的,比如某系统在单位阶跃信号输入下是原理性无差系统,但是在脉冲信号输入下却是有差系统。稳态误差如何求? 求稳态误差的步
源码: #include <iostream> #include <fstream> #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <op
转载 2024-07-24 14:29:35
40阅读
这个函数首先是载入了两张png图片到srcImage1和logoImage中,然后定义了一个Mat类型的imageROI,并使用cv::Rect设置其感兴趣区域为srcImage1中的一块区域,将imageROI和srcImage1关联起来。接着定义了一个Mat类型的的mask并读入dota_logo.jpg,顺势使用Mat:: copyTo把mask中的内容拷贝到imageROI中,于是就得到了
转载 2024-10-14 17:23:36
48阅读
泛洪填充(Flood Fill)很多时候国内的开发者称它为漫水填充,该算法在图形填充与着色应用程序比较常见,属于标配。在图像处理里对二值图像的Hole可以通过泛洪填充来消除,这个是泛洪填充在图像处理中很经典的一个用途,此外还可以通过泛洪填充为ROI区域着色。这个在图像处理也经常用到。让我们首先看一下泛洪填充算法本身,然后再说一下在图像处理中的应用场景。泛洪填充算法通常泛洪填充需要从一个点开始,这个
OpenCV是一个巨大的开源库,广泛用于计算机视觉,人工智能和图像处理领域。它在现实世界中的典型应用是人脸识别,物体检测,人类活动识别,物体跟踪等。现在,假设我们只需要从整个输入帧中检测到一个对象。因此,代替处理整个框架,如果可以在框架中定义一个子区域并将其视为要应用处理的新框架,该怎么办。我们要完成一下三个步骤:• 定义兴趣区• 在ROI中检测轮廓• 阈值检测轮廓轮廓线什么是ROI?简而言之,我
引言在利用OpenCV对图像进行处理时,通常会遇到一个情况,就是只需要对部分感兴趣区域进行处理。因此,如何选取感兴趣区域呢?(其实就是“抠图”)。在学习opencv的掩码运算后,尝试实现一个类似halcon的reduce_domain功能,对于实现抠图的过程中,需要掌握的要点就是位运算符和copyTo函数?位运算符的相关API:void bitwise_and(InputArray src1, I
图像的输入、输出获取图像基本信息像素取反色彩空间转换捕捉视频中的颜色物块通道的分离与合并算术运算逻辑运算调整图像亮度、对比度泛洪填充模糊操作高斯噪声、高斯模糊边缘保留滤波(EPF)像素直方图像素直方图应用直方图反向投影(定位)模板匹配图像二值化图像金字塔图像梯度Canny边缘提取直线检测提取水平、竖直线圆检测轮廓发现对象测量膨胀、腐蚀开闭操作其他形态学操作分水岭算法(图像分割)人脸检
区域生长:就是以某个像素值进行扩散,查找颜色相近的范围区域。这里主要介绍四种方法: 固定灰度值、动态灰度值、固定RGB值、动态RGB值。这四种方法对应不同图片。经测试效果可以1.固定灰度值区域生长//固定灰度值区域生长 cv::Mat RegionGrow(cv::Mat src, cv::Point2i pt, int th) { cv::Point2i ptGrowing;
# 如何实现Python MSER ## 一、流程概述 在实现Python MSER(Maximally Stable Extremal Regions)之前,我们需要了解整个流程。下面是实现Python MSER的步骤概览: | 步骤 | 操作 | | ---- | ---- | | 1 | 导入必要的库 | | 2 | 读取图像 | | 3 | 灰度化处理 | | 4 | 计算MSER
原创 2024-03-02 06:15:44
34阅读
# MSER算法在Python中的应用 ## 1. 介绍 MSER(Maximally Stable Extremal Regions)是一种用于图像分析和计算机视觉领域的特征检测算法。该算法旨在找到图像中最大稳定的极值区域,这些区域通常表示图像中的显著目标。MSER算法具有鲁棒性和稳定性,并且对光照和尺度变化具有较强的适应性。 在本文中,我们将介绍如何使用Python中的OpenCV库来实
原创 2023-10-05 09:23:05
145阅读
1、理论基础      区域生长算法的基本思想是将有相似性质的像素点合并到一起。对每一个区域要先指定一个种子点作为生长的起点,然后将种子点周围领域的像素点和种子点进行对比,将具有相似性质的点合并起来继续向外生长,直到没有满足条件的像素被包括进来为止。这样一个区域的生长就完成了。这个过程中有几个关键的问题:a> 给定种子点(种子点如何选取?)  &
转载 2024-08-07 11:24:28
98阅读
1、感兴趣区域的选取感兴趣区域(Region of Interest, ROI)的选取,一般有两种情形:1)已知ROI在图像中的位置;2)ROI在图像中的位置未知。1)第一种情形 很简单,根据ROI的坐标直接从原图抠出,不过前提是要知道其坐标,直接上例子吧。int getROI(Mat image, Rect rect) { Mat img=image.clone(); Mat r
一、连通区域分析连通区域(Connected Component)一般是指图像中具有相同像素值且位置相邻的前景像素点组成的图像区域(Region,Blob)。连通区域分析(Connected Component Analysis,Connected Component Labeling)是指将图像中的各个连通区域找出并标记。连通区域分析是一种在CVPR和图像分析处理的众多应用领域中较为常用和基本的
转载 2024-01-27 12:17:36
52阅读
一、Canny算子检测轮廓   ()1.概念及原理(1)之前我们是对梯度大小进行阈值化以得到二值的边缘图像。但是这样做有两个缺点。其一是检测到的边缘过粗,难以实现物体的准确定位。其二是很难找到合适的阈值既能足够低于检测到所有重要边缘,又能不至于包含过多次要边缘,这就是Canny算法尝试解决的问题。(2)Canny算子通常是基于Sobel算子,当然也可以使用其他梯度算子。其思想是
  • 1
  • 2
  • 3
  • 4
  • 5