1图像矩帮你计算一些属性,比如重心,面积等。函数cv2.moments()会给你一个字典,包含所有矩值import cv2import numpy as np
img = cv2.imread('star.jpg',0)
ret,thresh = cv2.threshold(img,127,255,0)
contours,hierarchy = cv2.findContours(thresh, 1
转载
2024-05-24 23:48:16
91阅读
title: 轮廓特征学习轮廓特征学习import numpy as np
import cv2 as cv
img = cv.imread(r'C:\Users\admin\Desktop\test_picture\maomao.jpg', 0)
ret, thresh = cv.threshold(img, 127, 255, 0)
'''
def findContours(image, m
转载
2024-03-24 11:03:38
32阅读
OpenCV 轮廓基本特征 分类: OpenCV(35)
一、概述 我们通过cvFindContours( )函数获取得图像轮廓有何作用呢?一般来说,我们对轮廓常用的操作有识别和处理,另外相关的还有多种对轮廓的处理,如简化或拟合轮廓,匹配轮廓到模板,等等。
转载
2024-08-29 16:06:59
37阅读
一、概述 使用发现并绘制轮廓比较简单,只需要调用findContours和drawContours两个方法就行了,但前提是要对图像做一下预处理。 实现步骤如下: 1.将原图转换为灰度图像 2.执行二值分割 3.去除无用的噪声 4.发现轮廓 5.绘制轮廓 6.展示轮廓图二、示例代码 Mat src = imread(inputImagePath);
imshow("原始图"
转载
2023-06-30 23:56:28
421阅读
目标了解轮廓是什么。学习查找轮廓,绘制轮廓等。
cv2.findContours(),cv2.drawContours()
什么是轮廓?轮廓可以简单地解释为连接具有相同颜色或强度的所有连续点(沿边界)的曲线。轮廓是用于形状分析以及对象检测和识别的有用工具。为了获得更高的准确性,请使用灰度图像。因此,在找到轮廓之前,请应用阈值或canny边缘检测从OpenCV 3.2开始,cv2.findConto
转载
2024-02-19 18:51:03
197阅读
/*
Hu轮廓匹配:
#include "Opencv_MatchShape.h"
#include "Match_Shape_NCC.h"
int main(int argc, char* argv)
{
Opencv_MatchShape demo;
demo.MatchShape_HU();
system("pause");
return 0;
}
*/
#include <io
转载
2023-12-14 19:13:44
55阅读
一、什么是层次结构通常我们使用函数cv.findContours()在图片中查找一个对象。有时对象可能位于不同的位置。还有一些情况,一个形状在另外一个形状的内部。这种情况下我们称外部的形状为父,内部的形状为子。按照这种方式分类,一副图像中的所有轮廓之间就建立父子关系。 让我们来看一个简单的例子: 在这个图中,我给这几个形状编号为0-5,2和2a分别代表最
转载
2023-11-02 10:42:23
106阅读
轮廓特征目标查找轮廓的不同特征,例如面积,周长,重心,边界框等。你会学到很多轮廓相关函数矩 图像的矩可以帮助我们计算图像的质心,面积等。详细信息请查看维基百科Image Moments。 函数 cv2.moments() 会将计算得到的矩以一个字典的形式返回。如下:# -*- coding: utf-8 -*-
"""
Created on Sun Jan 12 18:30:17 2014
转载
2024-07-24 11:46:18
26阅读
一、OpenCV中的轮廓
图像的上半部分是一张白色背景上的测试图像,包含了一系列标记 A 到 E的区域。寻找到的轮廓被标记为 cX 或 hX, 其中c 代表 “轮廓(contour)”,h 代表 “孔(hole)”(也可以理解为内轮廓)。 同样,左图是原始图片,右图是寻找到的轮廓,它也采用了类似的标注方法。 二、函数调用细节 寻找轮廓的主要函数是 cv::
转载
2024-08-29 16:09:38
311阅读
目录一、轮廓的绘制的作用二、内容介绍三、代码实现一、轮廓的绘制的作用用于图形分析和处理:轮廓是图像中物体边界的描绘,通过绘制轮廓,我们可以更好地分析和理解图像中的物体和形状。例如,轮廓可用于识别和区分不同的对象、测量物体的面积和周长等。辅助机器视觉和物体识别:轮廓可以帮助计算机视觉系统(如机器人、自动驾驶车辆等)更好地识别和理解其环境。例如,通过轮廓,系统可以识别出不同的人、物体或道路标志。特征提
转载
2024-06-20 12:40:44
30阅读
文章目录一、寻找轮廓findContours()1.要层次hierarchy2.不要层次hierarchy3.轮廓就是点集二、绘制轮廓drawContours()三、寻找凸包四、使用多边形1.外部矩形边界boundingRect()2.寻找最小包围矩形minAreaRect()3.寻找最小包围圆形minEnclosingCircle()4.用椭圆拟合二维点集fitEllipse()5.逼近多边形
转载
2024-04-27 10:28:29
974阅读
一个轮廓一般对应一系列的点, 也就是图像中的一条曲线。其表示方法可能根据不同的情况而有所不同。 在opencv中可以用findContours()函数从二值图像查找轮廓findContours()函数用于在二值图像中寻找轮廓
◆ findContours() [1/2]void cv::findContours(InputArray image,  
转载
2024-04-27 22:59:34
83阅读
1.特征矩主要使用cv.moments()函数来实现。cv.moments ( InputArray array, bool binaryImage = false )参数如下:array:输入数组,可以是光栅图像(单通道,8-bit或浮点型二维数组),或者是一个二维数组(1 X N或N X 1),二维数组类型为Point或Point2fbinaryImage:默认值是false,如果为true
转载
2024-04-29 22:49:28
134阅读
1-3 查找并绘制轮廓、矩特性及Hu矩4-5 轮廓拟合及凸包6. 利用形状场景算法比较轮廓6.1 计算形状场景距离6.2 计算Hausdorff距离7. 轮廓的特征值7.1 宽高比7.2 Extend7.3 Solidity7.4 等效直径(Equivalent Diameter)7.5 方向7.6 掩模和像素点7.7 最大值和最小值及它们的位置7.8 平均颜色及平均灰度7.9 极点 1-3 查找
转载
2024-03-16 08:29:35
659阅读
把检测出的边缘像素组装成轮廓 —— cvFindContoursOpenCV 使用内存存储器来统一管理各种动态对象的内存。内存存储器在底层被实现为一个有许多相同大小的内存块组成的双向链表内存储器可以通过四个函数访问 : cvCreateMemStorage(创建一个内存存储器,0采用默认大小) cvReleaseMemStorage&nb
转载
2024-05-15 10:38:44
89阅读
18.OpenCV的图像轮廓——霍夫变换 文章目录前言一、霍夫直线变换二、概率霍夫直线变换三、霍夫圆变换四、OpenCV-Python资源下载总结 前言 霍夫变换用于在图像中查找直线和圆等形状。一、霍夫直线变换 cv2.HoughLines()函数利用霍夫变换算法检测图像中的直线,其基本格式如下:lines = cv2.HoughLines(image, rho, theta, thresho
转载
2024-05-02 21:33:29
57阅读
OpenCV 中的轮廓✏️问:什么是轮廓? ?️答:轮廓是一系列相连的点组成的曲线,代表了物体的基本外形,相对于边缘,轮廓是连续的,边缘并不全部连续。✏️问:如何寻找轮廓? ?️答:寻找轮廓的操作一般用于二值化图,所以通常会使用阈值分割或Canny边缘检测先得到二值图
PS:寻找轮廓是针对白色物体的,一定要保证物体是白色,而背景是黑色,不然很多人在寻找轮廓时会找到图片最外面的一个框。
寻找轮
转载
2023-10-26 13:40:22
152阅读
虽然Canny之类的边缘检测算法可以根据像素间的差异检测出轮廓边界的像素,但是它并没有将轮廓作为一个整体进行处理。 函数findContours():可以将这些边缘像素合成轮廓。一个轮廓对应一系列点,这些点以某种方式表示图像中的一条曲线。 1)在opencv中,轮廓用标准模板库(STL)向量vector<>表示; 2)它处理的图像可以是Canny()函数得到的有边缘像素的图像,或者是t
转载
2024-02-26 11:06:12
216阅读
OpenCV中的轮廓1.1什么是轮廓 轮廓可以简单认为成连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。轮廓在形状分析和物体的检测和识别中很有用。为了准确,要使用二值化图像。需要进行阀值化处理或者Canny边界检测。查找轮廓的函数会修改原始图像。如果之后想继续使用原始图像,应该将原始图像储存到其他变量中。在OpenCV中,查找轮廓就像在黑色背景中超白色物体。你应该记住,要找的物体应该是
转载
2023-11-02 00:35:30
70阅读
一个是findContours( img, contours0, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE);另一个是drawContours( cnt_img, contours, idx, color, 1, 8, hierarchy ); int main( int argc, char**)
{
Mat img = Mat::ze
转载
2024-08-29 17:37:44
36阅读