存取像素值获取像素值: 灰度图片:pixel = img.at<uchar>(100, 200);彩色图片:pixel = img.at<Vec3b>(100, 200);//对于彩色图像,Mat会返回一个有三个8位数组成的unsigned char类型向量修改像素值: 灰度图片:img.at<uchar>(100, 200) = 255;彩色图片:for(in
转载
2024-04-07 09:33:05
108阅读
上个随笔讲了在windows 上安装 caffe,并且 跑mnist 这个例程的过程,说真的,就像奶妈一样,每一步都得给奶才干活。最近配置了一台台式机,可以作为以后自己配置学习机的参考。配置如下:补图。 电脑概览电脑型号 兼容机操作系统 Ubuntu 16.04 LTSCPU AMD Ryzen 7 1700X Eight-Core Processor(3400 MHz)主板 华硕 RO
转载
2024-04-17 11:16:51
170阅读
这篇内容跟OpenCV关系不大,但对于c++初学者有很大的帮助。 一、指针概念指针是一个变量,存储的是地址。 所以指针本质是一个地址!看到指针条件反射想到地址。 对于一个常规变量,&运算符就能够取得他的地址。所以一个变量var,那么&var就是一个地址。注意:这里的&代表获取地址,和引用&不一样。获取地址&在变量前面,引用&在数据类型后面,一般放在函
转载
2024-05-31 10:14:28
28阅读
在多数的图像处理任务,为了执行一个计算任务,需要遍历图像的所有像素.考虑到大量的像素数据需要被访问,用一个有效率的方法去做这个事情是很有必要的.本节和下一节会用不同的方式展示如何用循环遍历图像.本节使用指针的方法.Getting ready我们会用一个简单的任务举例如何遍历图像:减少一幅图像的颜色数.彩色图像是由三个通道的像素组成的.每个通道的亮度值分别对应三原色(红绿蓝).因为这些值是8位uns
转载
2024-06-29 08:05:19
92阅读
目录一、一些概念及说明二、设备信息函数一、一些概念及说明1、主机端(Host端)、设备端(Device端、GPU端)在CUDA中,有主机端和设备端这两个概念,主机端是指CPU+内存,设备端是指GPU+显存。主机端的代码在CPU上执行,访问主机内存;设备端代码在GPU上执行,访问显存。在使用GPU计算时,需要在主机内存好显存之间来回拷贝数据;当然,一些新技术可以不用拷贝数据,请参考后面的章节或者CU
转载
2024-04-05 22:29:30
533阅读
【计算机视觉】关于OpenCV中GPU配置编译的相关事项标签(空格分隔): 【计算机视觉】前一段发现了OpenCV中关于GPU以及opencl的相关知识,打算升级一下对OpenCV的使用,但是发现从OpenCV官网上下载的都是没有WITH_CUDA这一选项的。于是必须进行OpenCV带CUDA的重编译!下面就记录这一阶段出现的一系列问题。关于OpenCV版本的问题 起初直接尝试使用一直用的Open
转载
2024-05-14 07:18:03
141阅读
1、 查看本机配置,查看显卡类型是否支持NVIDIA GPU,本机显卡为NVIDIA GeForce 8400 GS;2、 从http://www.nvidia.cn/Download/index.aspx?lang=cn下载最新驱动并安装;3、 从https://developer.nvidia.com/cuda-toolkit根据本机类型下载相应最新版的CU
转载
2024-03-08 09:11:06
181阅读
【深度学习】【Opencv】【GPU】python/C++调用onnx模型【基础】提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 文章目录【深度学习】【Opencv】【GPU】python/C++调用onnx模型【基础】前言Python版本OpenCVWindows平台安装OpenCVopencv调用onnx模型C++版本OpenCV_GPUWindows平台编译安装Open
转载
2024-07-28 17:32:51
172阅读
使用GPU加速要看在什么平台上使用,目前VS中是直接可以将函数指定在GPU上运行,但是要注意使用的场合,并不是什么情况下使用GPU都可以加速,GPU是因为使用了显存,而显存是比内存大很多的,所以可以同时对很多数据进行处理,所以才能提高处理速度,但其实它的计算频率并不比内存上高,所以可以看出GPU能够加速的原理是:大容量并行计算(可能形容得不到位…..)。但是如果只对一个数据进行反复计算,这时候GP
转载
2023-10-17 20:06:00
420阅读
学习目标理解算法的原理,能够使用进行关键点的检测SIFT/SURF算法1.1 SIFT原理前面两节我们介绍了和角点检测算法,这两种算法具有旋转不变性,但不具有尺度不变性,以下图为例,在左侧小图中可以检测到角点,但是图像被放大后,在使用同样的窗口,就检测不到角点了。 所以,下面我们来介绍一种计算机视觉的算法,尺度不变特征转换即。它用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其
转载
2024-08-23 17:58:30
268阅读
背景在文章编译安装LitmusRT遇到的问题中,我们已经编译安装了实时操作系统LitmusRT,并且能够正常启动它。现在,我们得编译安装一下GPU加速的第三方库OpenCL或OpenACC。这里再次注意不要用虚拟机安装英伟达驱动,因为虚拟机的显卡是虚拟出来的,加载不了英伟达的ko文件。所以我使用的是实验室的ubuntu16.04 64位台式机,此台式机已经装好了英伟达驱动、cuda10.2和10.
转载
2024-05-07 13:37:56
430阅读
# 用Python与OpenCV实现指针功能
在开发图像处理程序时,我们常需要对图像进行某些操作,比如获取和修改图像中像素的色彩信息。在这个过程中,"指针"的概念实际上并不常见于Python,因为Python本身并不直接支持指针。但我们可以通过其他方法实现类似的功能,比如使用数组索引。接下来,我将指导你如何通过OpenCV在Python中实现类似于指针的功能。
## 实现流程
以下是实现的整
原创
2024-10-09 04:16:24
11阅读
图像矩阵是如何存储在内存之中的? 图像矩阵的大小取决于我们所用的颜色模型,确切地说,取决于所用通道数。 如果是灰度图像,矩阵就会像这样:
而对多通道图像来说,矩阵中的列会包含多个子列,其子列个数与通道数相等。 例如,RGB颜色模型的矩阵: 注意到,子列的通道顺序是反过来的:BGR而不是RGB。很多情况下,因为内存足够大,可实现连续存储,因此,图像中的各行就能一行一行地连接起来,形成一个
转载
2024-04-14 08:29:54
45阅读
网上教程挺多的的,我也是参考网上教程编译成功的,现在把我编译的过程发出来。 目的:使用opencv中的cuda加速函数。例如:frame1_gray = cv.cuda_GpuMat(image1)
frame2_gray = cv.cuda_GpuMat(image2)
opticalFlowGPU = cv.cuda_FarnebackOpticalFlow.create(3,0.5,Fals
转载
2024-02-10 07:39:18
329阅读
OpenCV4 + CUDA 从配置到代码.....引子一直有人在研习社问我,怎么去做OpenCV + CUDA的加速支持。其实网上用搜索引擎就可以找到一堆文章,但是其实你会发现,按照他们的做法基本都不会成功,原因是因为文章中使用的OpenCV版本太老旧、英伟达GPU的CUDA库也太久远。其实这个都不是主要原因,真实原因是OpenCV4跟之前的版本,编译CUDA的方法不一样了。所以感觉有
转载
2024-02-21 14:11:51
111阅读
重磅干货,第一时间送达import cv2 as cv
gpu_frame = cv.cuda_GpuMat()
screenshot = cv.imread('media/drip.png')
gpu_frame.upload(screenshot)
gpu_frame.download() 概述在单张图像上使用在多张图像上使用对多张图像使用Dask进行并行延时处理在单张图像上使用我们
转载
2024-04-02 08:03:49
508阅读
如果您使用OpenCV已有一段时间,那么您应该已经注意到,在大多数情况下,OpenCV都使用CPU,这并不总能保证您所需的性能。为了解决这个问题,OpenCV在2010年增加了一个新模块,该模块使用CUDA提供GPU加速。您可以在下面找到一个展示GPU模块优势的基准测试:简单列举下本文要交代的几个事情:概述已经支持CUDA的OpenCV模块。看一下cv :: gpu :: GpuMat(cv2.c
转载
2024-02-21 10:52:39
626阅读
OpenCV中配置CUDA,实现GPU加速按语:首先感谢博主的方法,在这个基础上编译之后发现了很多问题,所以进行了改正,有了以下方法:1、 查看本机配置,查看显卡类型是否支持NVIDIA GPU,本机显卡为NVIDIA GeForce GT630;2、 从http://www.nvidia.cn/Download/index.aspx?lang=cn下载最新驱动并安
转载
2024-01-09 15:42:54
186阅读
写在前面:一直想尝试一下opencv GPU模块,无奈以前电脑配置的ATI的显卡,最近换了一台联想的D20工作站,虽然性能不比最近发布的D30,但还算是有了可以尝试cuda的平台。没想到刚开始还是遇到不少问题。首先遇到的就是重新编译支持GPU模块的opencv版本,由于这里写的是回忆,可能有些不太详尽,还望看到这篇博文的朋友能够补充。一、安装篇:安装部分分为cuda安装和opencv编译。1.1、
转载
2024-02-27 21:32:26
50阅读
前言在OpenCV中,图像的遍历有多种方法,其中常用的有:1、最快速--ptr指针2、最安全--迭代器3、最便捷--at方法下面引用大神的代码实验结果:很明显,指针的效率最高,迭代器的效率最低。Time of scan_image_c (averaged for 100 runs): 2.04884 ms.
Time of scan_image_iterator (averaged
转载
2024-08-08 14:24:18
79阅读