图解NLP模型发展:从RNN到Transformer 自然语言处理 (NLP) 是深度学习中一个颇具挑战的问题,与图像识别和计算机视觉问题不同,自然语言本身没有良好的向量或矩阵结构,且原始单词的含义也不像像素值那么确定和容易表示。一般我们需要用词嵌入技术将单词转换为向量,然后再输入计算机进行计算。词嵌入可用于多种任务,例如情感分类、文本生成、名称实体识别或机器翻译等。它以一种巧妙的处理方式,让模
主题模型主题模型就是利用大量已知的P(w|d)信息,训练出P(c|d) 和P(w|c)。   LDA模型LDA(Latent Dirichlet Allocation)是一种文档主题生成模型,也称为一个三层贝叶斯概率模型,包含词、主题 和文档三层结构。所谓生成模型,就是说,我们认为一篇文章的每个词都是通过“文章以一定概率选择了某个主题,并从这个主题中以一定概率选择某个
转载 2024-01-26 13:41:25
126阅读
LDA模型NLP中很基础也是大家广为熟知的模型,在面试过程也经常遇到。本文简单讲述下其大致流程。1 LDA 简介首先,我们来感受下LDA是什么,什么是LDA模型?看来,不同人在不同场景下对LDA的认识,那我们看下百科的解释:LDA(Latent Dirichlet Allocation)是一种文档主题生成模型,也称为一个三层贝...
原创 2023-05-18 11:31:02
273阅读
http://pythonhosted.org/lda/getting_started.htmlhttp://radimrehurek.com/gensim/
转载 2015-04-27 18:19:00
125阅读
2评论
前言本篇博文将详细讲解LDA主题模型,从最底层数学推导的角度来详细讲解,只想了解LDA的读者,可以只看第一小节简介即可。PLSA和LDA非常相似,PLSA也是主题模型方面非常重要的一个模型,本篇也会有的放矢的讲解此模型。如果读者阅读起来比较吃力,可以定义一个菲波那切数列,第 f(n) = f(n-1) + f(n-2) 天再阅读一次,直到这个知识点收敛。如果读者发现文章中的错误或者有改进之处,欢迎
 LDA参数推导的Gibbs采样方法基于马尔科夫链蒙特卡洛方法,因此首先学习MCMC方法。一、马尔科夫链蒙特卡洛方法MCMC(Markov Chain Monte Carlo)方法是构造适合的马尔科夫链,使其平稳分布为待估参数的后验分布,抽样并使用蒙特卡洛方法进行积分计算,实现了抽样分布随模拟的进行而改变的动态模拟,弥补了传统蒙特卡洛积分只能静态模拟的缺陷。1、蒙特卡洛方法蒙特
  通常称为LSA,因为维基百科中提到:it is sometimes called latent semantic indexing (LSI).LSA的文档里面則以称为LSI为主. 所以百度上的(包括本文在內)LSA就是LSI,LSI就是LSA #################LSA和LSI(end)###################\##################LDA
转载 2024-06-25 17:24:21
159阅读
LDA是自然语言处理中非常常用的一个主题模型,全称是隐含狄利克雷分布(Latent Dirichlet Allocation),简称LDA。作用是将文档集中每篇文档的主题以概率分布的形式给出,然后通过分析分到同一主题下的文档抽取其实际的主题(模型运行结果就是一个索引编号,通过分析,将这种编号赋予实际的意义,通常的分析方法就是通过分析每个topic下最重要的term来进行总结归纳),根据主题分布进行
转载 2023-07-21 17:23:46
1348阅读
最近半个月一直纠结与LDA中,拔也拔不出来,有很多的东西我自己是不太理解的,现在还是重新理一下思路,然后再重新来做吧。 对于评价聚类算法的好坏的评价指标: 第一是利用有分类标签的测试数据集,然后判断聚类的结果与真实的结果之间的差距。 第二是利用无分类标签的测试数据集,用训练出来的模型来跑测试数据集,然后计算在测试数据集上,所有的token似然值几何平均数的倒数,也即perplexity指标,
 前言在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来。在自然语言处理领域, LDA是隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),是一种处理文档的主题模型。本文只讨论线性判别分析,因此后面所有的LDA均指线性判别分析。LDA思想LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的,这点和PCA不同。PCA是不考
转载 2024-04-19 18:54:48
137阅读
LDA是带有隐变量的生成模型,狄利克雷分布的参数和是生成模型的参数,所有文章的所有词w们是观测值X,每篇文章的主题分布和每个主题的词分布是隐变量。LDA贝叶斯网络的那张经典图的解释:每个主题的词分布,全局只采样一次,之后就固定住了;同理每篇文章的主题分布也只采样一次;生成一个词的时候,先根据主题分布采样得到该词的主题,再根据该主题的词分布采样得到该词;词分布和主题分布的先验分布(2个都是狄利克雷分
原作者:我想听相声 理解LDA,可以分为下述5个步骤: 1)一个函数:gamma函数 2)四个分布:二项分布、多项分布、beta分布、Dirichlet分布 3)一个概念和一个理念:共轭先验和贝叶斯框架 4)两个模型:pLSA、LDA 5)一个采样:Gibbs采样共轭先验分布1.1似然函数统计学中,似然函数是一种关于统计模型参数的函数,表示模型参数中的似然性。计算上:给定输出x时,关于参数θ的似
转载 2024-05-13 10:41:58
34阅读
 主题模型LDA的应用拿到这些topic后继续后面的这些应用怎么做呢:除了推断出这些主题,LDA还可以推断每篇文章在主题上的分布。例如,X文章大概有60%在讨论“空间探索”,30%关于“电脑”,10%关于其他主题。这些主题分布可以有多种用途:聚类: 主题是聚类中心,文章和多个类簇(主题)关联。聚类对整理和总结文章集合很有帮助。参看Blei教授和Lafferty教授对于Science杂志的
LDA(Latent Dirichlet Allocation)模型是Dirichlet分布的实际应用。在自然语言处理中,LDA模型及其许多延伸主要用于文本聚类、分类、信息抽取和情感分析等。 例如,我们要对许多新闻按主题进行分类。目前用的比较多的方法是:假设每篇新闻都有一个主题,然后通过分析新闻的文本(即组成新闻的词),推导出新闻属于某些主题的可能性,这样就可以按照可能性大小将新闻分类了
1)从狄利克雷分布α中抽样,生成文档d的主题分布θ2)从主题的多项式分布θ中抽样,生成文档d的第i个词的主题zi3)从狄利克雷分布β中抽样,生成主题zi对应的词语分布φi4)从词语的多项式分布φi中采样,最终生成词语wi 这个模型图的解释如下:1.:这个过程表示生成第n个词对应的topic。在生成第m篇文档的时候,先从topic骰子中抽了一个骰子,然后投掷这个骰子,得到文档中第n个词的t
转载 2024-07-29 18:12:30
51阅读
LDA(Latent Dirichlet Allocation)模型是Dirichlet分布的实际应用。在自然语言处理中,LDA模型及其许多延伸主要用于文本聚类、分类、信息抽取和情感分析等。 例如,我们要对许多新闻按主题进行分类。目前用的比较多的方法是:假设每篇新闻都有一个主题,然后通过分析新闻的文本(即组成新闻的词),推导出新闻属于某些主题的可能性,这样就可以按照可能性大小将新闻分类了
---恢复内容开始--- 小项目:分析希拉里邮件主题 import numpy as npimport pandas as pdimport redf = pd.read_csv("HillaryEmails.csv")df.head(1)#发现df中有很多字段,最有用的还是 ExtractedBodyText内容,所以我们将提取该字段,并提出id,再dropna()
转载 2024-08-06 20:02:26
116阅读
宏观理解LDA有两种含义线性判别器(Linear Discriminant Analysis)隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA)本文讲解的是后者,它常常用于浅层语义分析,在文本语义分析中是一个很有用的模型LDA模型是一种主题模型,它可以将文档集中的每篇文档的主题以概率分布的形式给出,从而通过分析一些文档抽取出它们的主题(分布)出来后,便可以根据
1、铺垫        最开始听说“LDA”这个名词,是缘于rickjin在2013年3月写的一个LDA科普系列,叫LDA数学八卦,不知是因为这篇文档的前序铺垫太长,还是因为其中的数学推导细节太多,导致一直没有完整看完过。现在才意识到这些“铺垫”都是深刻理解LDA 的基础,如果没有人帮助初学者提纲挈领、把握主次、理清思路,则很容易陷入LDA的细枝末节之中,L
转载 2024-06-16 10:22:34
0阅读
LDA(Latent Dirichlet Allocation)主题建模是NLP确定文档主题方法,为无监督学习方法,当面对多个文档,能挖掘潜在的主题,类似于聚类方法,但又何聚类实质不一样,LDA从概率的角度来推出主题和词的分布,主题和词相互混合,没有聚类算法界限那么清晰。理解LDA牵涉很多算法和思想,马尔科夫链蒙特卡洛算法(MCMC)、吉布斯采样(Gibbs Sampling)、Gammer函数、
  • 1
  • 2
  • 3
  • 4
  • 5