# Python聚类分析案例
## 引言
聚类分析是一种数据分析方法,用于将相似的数据点分组成不同的集群。在数据挖掘、模式识别和机器学习中,聚类分析被广泛应用于数据集的探索性分析和模式发现。Python提供了许多强大的库和工具,可以轻松进行聚类分析。本文将介绍聚类分析的基本概念,并通过一个实际的案例演示如何使用Python进行聚类分析。
## 聚类分析的基本概念
聚类分析基于相似性度量,将数据
原创
2023-08-10 05:38:56
98阅读
一、聚类分析的概念聚类分析时一种原理简单、应用广泛的数据挖掘技术。聚类分析即是把若干事务按照某种标准归为几个类别,其中较为相近的聚为一类,不那么相近的聚于不同类聚类分析时研究对样本或变量的聚类,在进行聚类时,可使用的方法有很多,而这些方法的选择往往与变量的类型有关,由于数据的来源及测量方法的不同,变量大致可以分为两类:定量变量;定性变量二、聚类算法聚类算法种类繁多,其中绝大多数可以用R实现,下面将
转载
2024-01-14 23:58:06
89阅读
这是 python 数据分析案例系列的第二篇,主要是聚类分析,实现起来较为简单。在处理实际的数据分析案例时,我们面临的往往是比较复杂的研究对象,如果能把相似的样品(或指标)归成类,处理起来大为方便。聚类分析目的就是把相似的研究对象归成类先贴上总结的聚类分析基本步骤:算法过程如下:1)从N个文档随机选取K个文档作为 质心2)对剩余的每个文档测量其到每个 质心 的距离,并把它归到最近的质心的类3)重新
转载
2023-10-12 11:50:45
127阅读
Python数据挖掘实例:K均值聚类任务任务要求数据预览分析代码实现结果分析数据文件链接 任务任务要求数据文件链接在全文的最后 借助Python软件进行上市公司财务状况数据挖掘与统计分析。 已知:132只股票、32个因素变量的4个日期数据记录(共528条记录)。要求用数据挖掘软件分析如下问题:抽取132只股票公司的财务指标数据中无缺失的指标变量数据,形成数据集X。所给数据已作一致化和无量纲化处理
转载
2024-02-28 21:33:44
9阅读
# 西瓜聚类分析案例
## 摘要
在机器学习领域,聚类是一种常用的无监督学习方法,用于将数据集中的样本按照相似性进行分组。本文将介绍一个关于聚类分析的案例,使用Python语言进行实现。我们将以西瓜的属性为例,使用K-means算法对西瓜进行聚类分析,以展示如何使用Python进行聚类分析。
## 简介
聚类分析是一种将相似的对象归到同一组或同一类别的过程。它是无监督学习的一种重要方法,没
原创
2023-09-29 04:34:01
113阅读
一家批发经销商想将发货方式从每周五次减少到每周三次,简称成本,但是造成一些客户的不满意,取消了提货,带来更大亏损,项目要求是通过分析客户类别,选择合适的发货方式,达到技能降低成本又能降低客户不满意度的目的。什么是聚类聚类将相似的对象归到同一个簇中,几乎可以应用于所有对象,聚类的对象越相似,聚类效果越好。聚类与分类的不同之处在于分类预先知道所分的类到底是什么,而聚类则预先不知道目标,但是可以通过簇识
转载
2023-08-26 17:40:25
170阅读
作者简介
Introduction聚类分析是一种机器学习领域最常用的分类方法,它在在客户分类,文本分类,基因识别,空间数据处理,卫星图片处理,医疗图像自动检测等领域有着广泛应用。聚类就是将相同,相似的对象划分到同一个组中,聚类分析事前不需要参考任何分类信息,可以通过判断数据表特征的相似性来完成对数据的归类。在聚类分析中,观测值的类别一般情况下是未知的。我们希望将观测值聚类为合适的几个分
转载
2024-06-17 21:37:01
35阅读
目录前言一、常用的数据分析库以及基本函数和相关概念的介绍聚类:无监督学习中对一组训练数据按照不同的特征进行分类,不给予相关的y,只有x,可以出现多个映射y二、Knn步骤1.导入数据集和相应的库函数2.可视化数据集,每一类随机选取7张图片3.随机采样数据集4.导入k近邻分类器模块 5.求解测试集和训练集欧式距离6.交叉验证个人心得:前言以完成iris的数据集的可视化分析及聚类分析和knn算
转载
2023-11-20 21:52:20
106阅读
一、导入库
import plotly as py
from sklearn.cluster import KMeans
import warnings
import os
warnings.filterwarnings("ignore")
py.offline.init_notebook_mode(connected = True)
# for basic mathematics operati
## 教你实现SOM聚类分析的Python代码
SOM(自组织映射)是一种无监督学习的神经网络算法,适用于数据可视化和聚类分析。今天,我将带你一步步实现SOM聚类分析的Python代码。
### 整体流程
为便于理解,下面是一个SOM聚类分析的流程表:
| 步骤 | 说明 |
| ------- | ----------------
物以类聚,人以群分,聚类分析是一种重要的多变量统计方法,但记住其实它是一种数据分析方法,不能进行统计推断的。当然,聚类分析主要应用在市场细分等领域,我们也经常采用聚类分析技术来实现对抽样框的分层,我就不多罗嗦了。 聚类分析:顾名思义是一种分类的多元统计分析方法。按照个体或样品(individuals, objects or subjects)的特征将它们分类,使
转载
2022-04-24 10:15:51
611阅读
一、聚类分析介绍基本概念:cluster analysis 是研究物以类聚的一种现代统计分析方法,在众多的领域中,都需要采用聚类分析作分类研究。 分析方法:系统聚类法(hclust)和快速聚类法(kmeans).
原创
2022-01-11 16:47:11
727阅读
聚类分析(Cluster Analysis)一、聚类分析与判别分析• 判别分析:已知分类情况,将未知个体归入正确类别 • 聚类分析:分类情况未知,对数据结构进行分类 二、Q型和R型 聚类 Q型是对样本进行分类处理,其作用在于: 1.能利用多个变量对样本进行分类 2.分类结果直观,聚类谱系图能明白、清楚地表达其数值分类结果 3.所得结果比传统的定性分类方法更仔细、全面、合理 R型是对变量进行分
转载
2015-02-03 10:06:00
324阅读
1.聚类的基本思想聚类分析将关系密切的研究对象聚合到一个小的分类单位,关系疏远的聚合到一个大
原创
2022-03-03 15:43:07
1297阅读
一般聚类个数在4-6类,不易太多,或太少
原创
2022-04-07 15:44:34
939阅读
SPSS聚类分析:K均值聚类分析一、概念:(分析-分类-K均值聚类) 1、此过程使用可以处理大量个案的算法,根据选定的特征尝试对相对均一的个案组进行标识。不过,该算法要求您指定聚类的个数。如果知道,您可以指定初始聚类中心。您可以选择对个案分类的两种方法之一,要么迭代地更新聚类中心,要么只进...
转载
2017-12-14 11:20:00
484阅读
2评论
定义:聚类分析或聚类是对一组对象进行分组的任务,使得同一组(称为集群)中的对象(在某种意义上)彼此之间比其他组(集群)中的对象更相似(在某种意义上)。应用领域:模式识别,图像分析,信息检索,生物信息学,数据压缩,计算机图形学和机器学习。内涵:聚类分析并不是一种特定的算法,而是要解决的一般任务,这些算法在理解什么构成集群以及如何有效地找到它们存在的显著差异。集群成员之间距离较小的组,数据空间的密集区
转载
2023-12-29 16:47:07
62阅读
判别与聚类的比较:聚类分析和判别分析有相似的作用,都是起到分类的作用。判别分析是已知分类然后总结出判别规则,是一种有指导的学习;聚类分析则是有了一批样本,不知道它们的分类,甚至连分成几类也不知道,希望用某种方法把观测进行合理的分类,使得同一类的观测比较接近,不同类的观测相差较多,这是无指导的学习。 所以,聚类分析依赖于对观测间的接近程度(距离)或相似程
转载
2023-12-03 13:46:39
114阅读
聚类分析是一个迭代的过程对于n个p维数据,我们最开始将他们分为n组每次迭代将距离最近的两组合并成一组若给出需要聚成k类,则迭代到k类是,停止 计算初始情况的距离矩阵一般用马氏距离或欧式距离个人认为考试只考 1,2比较有用的方法是3,4,5,8 最喜欢第8种 距离的计算 欧式距离 距离的二范数 马氏距离 对于X1, X2 均属于N(u, Σ)
转载
2023-10-12 16:02:46
208阅读
R语言与数据分析练习:K-Means聚类k-means实现k-means算法,是一种最广泛使用的聚类算法。k-means以k作为参数,把数据分为k个组,通过迭代计算过程,将各个分组内的所有数据样本的均值作为该类的中心点,使得组内数据具有较高的相似度,而组间的相似度最低。k-means工作原理初始化数据,选择k个对象作为中心点。遍历整个数据集,计算每个点与每个中心点的距离,将它分配给距离中心最近的组
转载
2024-06-20 17:05:11
125阅读