图像增强:Mat image = imread("../lic_image/lic_image/20140209220432703.png", 1); if (image.empty()) { std::cout << "打开图片失败,请检查" << std::endl; return -1; } imwrite("../
原创 2022-12-30 12:39:57
356阅读
# Python OpenCV 数据增强代码实现指南 在计算机视觉领域,数据增强是提高模型泛化能力的重要手段。它通过对训练数据进行各种变换来生成更多样本,从而增加模型的鲁棒性。接下来,我将向你介绍如何使用 Python 和 OpenCV 进行数据增强。 ## 流程概述 我们将整个实现过程分为以下几个步骤: | 步骤 | 任务描述
原创 8月前
114阅读
使用imgaug快速观察Python中的数据增强技术在本文中,我们将使用imgaug库来探索Python中不同的数据增强技术什么是图像增强图像增强是一种强大的技术,用于在现有图像中人为地创建变化以扩展图像数据集。这是通过应用不同的变换技术来实现的,例如缩放、旋转、剪切或裁剪现有图像。目标是创建一组全面的可能图像,代表各种变化。为什么需要图像增强图像增强在深度学习卷积神经网络 (CNN) 背景下至关
转载 2024-09-20 08:24:58
27阅读
图像模糊处理原理: 图像模糊处理即图像的滤波处理,在图像的掩模处理中我们第一次接触到图像的滤波处理。图像的滤波处理目的: ①、消除图像中混入的噪声;②、为图像识别抽取出图像特。 要求: ①、不能损坏图像轮廓及边缘 ;②、图像视觉效果应当更好。smooth/blur操作是低频增强的空间滤波技术,他的目的是:①模糊②消除噪音滤波器的种类: ①线性滤波:归一化盒子滤波(均值滤波)(Blur函数)、高斯滤
OpenCV中的模糊处理前言1、写在模糊理解前1.1什么是卷积1.2滤波器2、模糊方式2.1均值模糊(滤波)2.2中值模糊2.3高斯模糊总结 前言接到考核任务。 在学OpenCV模糊处理这方面,顾名思义,模糊处理是使图片变的模糊,在学习过程中发现有很多种模糊且有一堆听着十分有逼格的名字,公式也让初学的我看着头大,硬着头皮学下去。在网上查阅了很多相关资料,大部分都是一上来就十分高大上,门槛十分高,
目录CUDA安装与配置cuDNNCMake编译运行测试总结CUDA安装与配置根据自己的GPU 选择合适的版本,我的是RTX2080Ti,选择CUDA10.0版本,按照默认地址安装就好,安装完之后看是否有环境变量。没有的话自己加上。以及,cuDNNcuDNN一定要7.5版本以上,否则CMake将无法识别出cuDNN路径。 打开下载好的cuDNN,如下图将cuDNN中bin、include、lib文件
转载 2024-04-04 09:24:27
93阅读
文章目录一、图像增强代码的 C++ 实现1. PC 端实现代码2. 图片处理前后对比3. 对处理前后图片的模型识别结果二、图像增强算法移植安卓1. 移植过程2. 编译提示三、存在问题 一、图像增强代码的 C++ 实现在博客 一种基于Opencv文档图像增强算法的实现 提到了一种基于 C++ OpenCV 的图像增强算法, 并添加了辅助增强算法使效果更加明显.1. PC 端实现代码#include
 opencv是一款开源的图像增强工具,主要用于在 python环境下实现图像增强功能。 使用 opencv实现图像增强,需要使用 opencv的 GUI模块,如图1所示。 在 opencv中,有一个 datasets模块,这个模块主要用于处理数据和可视化操作,如图2所示。 在这里我们将使用这个 datasets模块进行图像增强的处理。如果想了解更多关于图像增强的内容,可以参考我们之前的
1 简介图像增强处理中常用的均值滤波和中值滤波等方法有较强的抑制噪声的能力,在一定程度上会导致图像模糊,影响图像处理的效果.直方图均衡化是目前地震图像增强的主要方法,但它存在着图像细节信息丢失和噪声放大的缺点.基于模糊集的图像增强方法逐渐被应用到实际的图像处理中,并且显示出它优于传统图像增强算法的特点.因此,将基于模糊集的图像增强方法应用到图像处理中,以克服传统图像增强方法的不足.2 完整代码x=
        使用低通滤波器可以达到图像模糊的目的。这对与去除噪音很有帮助。其实就是去除图像中的高频成分(比如:噪音,边界)。所以边界也会被模糊一点。(当然,也有一些模糊技术不会模糊掉边界)。OpenCV 提供了四种模糊技术。 1.平均       
转载 2023-09-08 22:52:13
79阅读
作者:阮一峰,高斯金字塔的作用:模拟人类的视觉,近处的东西看着大,并且能够看到东西的细节所在,当把这东西从眼前拿到几米外,虽然还是能看到东西,但也只能窥见它的轮廓了,对于细节无从得知。高斯金字塔就是模拟了这样的一种视觉特性,当对图像进行下采样的时候,图像的分辨率降低,就好比把东西从近处拿到了远处。这里的向下与向上采样,是对图像的尺寸而言的(和金字塔的方向相反),向上就是图像尺寸加倍,向下就是图像尺
文字型图片如:电子票据、文稿、记录等,由于拍摄条件或传输条件的限制经常导致内容模糊无法识别,经图龙解专项处理模块还原重建文字像素,获得视觉可辨识效果更有利于提高各类文字识别工具的准确率。 基于像素修复去除文字模糊的方法以截图、拍照等方式获取的图片很多是文字、字母和数字等符号内容。拍摄、截取或传输可能导致内容模糊、噪音叠加等问题,使得图片内容无法辨认识别,
增强现实增强现实(Augmented Reality,AR)是将物体和相应信息放置在图像数据上的一 系列操作的总称。最经典的例子是放置一个三维计算机图形学模型,使其看起来属 于该场景;如果在视频中,该模型会随着照相机的运动很自然地移动。如上一节所 示,给定一幅带有标记平面的图像,我们能够计算出照相机的位置和姿态,使用这 些信息来放置计算机图形学模型,能够正确表示它们。1 PyGame 和 PyOp
1 ArUco markerArUco marker是由S.Garrido-Jurado等人在2014年提出的,全称是Augmented Reality University of Cordoba,详见他们的论文《Automatic generation and detection of highly reliable fiducial markers under occlusion》。它类似于二
模糊操作基本原理1.基于离散卷积 2.定义好每个卷积核 3.不同卷积核得到不同的卷积效果 4.模糊是卷积的一种表象卷积原理根据视频所讲的意思 2 3 6 8 5 7 6 6 9 1 2 3 5 6 6 6 6 7 5 1 5=3+6+8/3取整 7=6+6+9/3模糊操作1.均值模糊#均值模糊 def blur_demo(image): #卷积,卷积之后变平滑(5,5)是一个5行5列的矩阵
转载 2023-10-27 11:27:58
138阅读
图像平滑(图像模糊):    一幅图像和一个低通滤波器进行卷积,能够实现图像平滑效果,也就是图像模糊效果。平滑操作通常会从图像中移除高频信息(噪音、边缘)。所以图像平滑后,图像边缘往往会被模糊(本文介绍的最后一种双边模糊技术基本不会模糊图像边缘)。Opencv 提供了多种图像平滑技术,也叫图像模糊技术。1. 平均模糊# kernel size is 5*5blur =&nbsp
模糊操作方法:均值模糊,中值模糊,自定义模糊模糊原理: 基于离散卷积,不同的卷积得到不同的卷积效果,模糊是卷积的表象。基础讲解链接opencv学习笔记11:图像滤波(均值,方框,高斯,中值)卷积原理示意图: (2乘1+3乘以1+6乘以1)除以3=3 边缘2和1未被卷积保留 边缘不参与卷积直接保留。均值模糊import cv2 as cv import numpy as np def blur_d
转载 2024-03-08 18:05:21
149阅读
模糊操作方法:均值模糊,中值模糊,自定义模糊 模糊原理: 基于离散卷积,不同的卷积得到不同的卷积效果,模糊是卷积的表象。卷积原理: (2乘1+3乘以1+6乘以1)除以3=3 边缘2和1未被卷积保留 边缘不参与卷积直接保留。这个应该是均值模糊1.均值模糊代码如下:import cv2 as cv import numpy as np #均值模糊:去除随机噪声 def blur_demo(imag
模糊图像图像模糊是图像处理中最常用的也是比较简单的操作,使用该操作的原因之一就是为了给图像预处理时隆低嗓声.卷积就是叠加.卷积的重要的物理意义是:一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。通俗的说: 在输入信号的每个位置,叠加一个单位响应,就得到了输出信号。 这正是单位响应是如此重要的原因。卷积的应用用一个模板和一幅图像进行卷积,对于图像上的一个点,让模板的原点和该点重合,
图像模糊 -线性滤波均值滤波高斯滤波中值滤波     2.非线性滤波双边滤波图像模糊的作用 -图像预处理时减低噪声。模糊操作的基本原理 - (数学的卷积运算)         其中权重核H(K,L)H(K,L)为“滤波系数”上面的式子可以简记为:  通常这些卷积算子计算都是线性操作,所以又叫线性滤波
  • 1
  • 2
  • 3
  • 4
  • 5