# 线性回归模型(LR模型)在Python中的应用
线性回归(Linear Regression)是一种基础且常用的统计分析方法,用于研究自变量(独立变量)与因变量(响应变量)之间的线性关系。在机器学习与数据科学领域,线性回归被广泛应用于预测与模型构建方面。本文将通过代码示例,介绍如何在Python中实现线性回归模型。
## 什么是线性回归?
线性回归的目标是寻找一个线性方程,通过该方程将自
原创
2024-09-09 06:50:44
45阅读
导语笔者对各大厂商CTR预估模型的优缺点进行对比,并结合自身的使用和理解,梳理出一条CTR预估模型的发展脉络,希望帮助到有需要的同学。0. 提纲1. 背景2. LR 海量高维离散特征 (广点通精排)3. GBDT 少量低维连续特征 (Yahoo & Bing)4. GBDT+LR (FaceBook)5. FM+DNN (百度凤巢)6. MLR
这里我只说一下,我在使用过程中的一些注意事项。比如,我创建了一个包,该包下面有两个模块:model1和model2,如下图 那么我们再python中怎样去使用自己创建的这两个包呢? 1、修改sys.path,这个网上教程很多,可以自己搜索一下。 2、import自己写的模块。 比如在ModelTest统计目录下新建一个python文件(modelTest.py),该文件用到我们自己写的
转载
2023-07-01 11:32:44
151阅读
"""对钙信号的动力学进行建模,AR模型。"""
import matplotlib.pyplot as plt
import numpy as np
if __name__ == '__main__':
length = 500
time = range(length)
gamma = 0.99
c0 = 1
# st = np.random.poi
转载
2023-06-04 21:54:09
196阅读
上一篇博客讲了基于LSTM不同类型的时间预测,这篇文档使用pytorch 动手实现如何基于LSTM模型单变量时间预测。同样使用sns flight(数据网盘下载链接见文末) 作为数据源,这里将数据下载下来存放在本机中。首先读取存储在本机中的flights.csv数据:import torch
import torch.nn as nn
imp
转载
2023-10-07 13:28:35
117阅读
在本文中,我们将继续进行机器学习讨论,并将重点放在与数据过度拟合相关的问题上,以及控制模型的复杂性,模型评估和错误引入,模型验证和调整以及提高模型性能。 过度拟合过度拟合是预测分析和机器学习中最大的担忧之一。过度拟合是指选择适合训练数据的模型拟合得太好,并且实际上捕获了所有噪声,离群值等的情况。这样的结果是,该模型将很
转载
2023-10-18 23:15:06
66阅读
# Python模型评估
## 导言
在机器学习和数据分析领域,模型评估是一个非常重要的环节。通过评估模型的性能,我们可以了解模型在解决特定问题上的效果如何,并根据评估结果进行模型的改进和优化。Python作为一种流行的编程语言,提供了许多用于模型评估的工具和库。本文将介绍一些常用的Python模型评估方法,并给出相应的代码示例。
## 模型评估的常用指标
在进行模型评估之前,我们需要选择
原创
2024-01-14 04:45:22
111阅读
【问题描述】毕业设计遇到一个问题:对多种气体回归。为了简化代码,数据导入已经封装成函数,只是需要手动修改气体种类,但每种气体都要单独训练一次,懒得每次训练完从床上爬起来改俩参数重新训练!!【尝试】程序里设置 for 循环,遍历多种气体——会爆内存(训练到第二个模型时电脑就开始卡,每步训练时间很长)【解决方案】使用 argparse 模块和 os.system() 方法第一步丨调用 'argpars
转载
2023-06-30 19:36:59
451阅读
# Python模型评估
在机器学习领域中,模型评估是非常重要的一环。通过对模型进行评估,我们可以了解模型的性能如何,并根据评估结果进行模型的改进和优化。本文将介绍在Python中进行模型评估的常用方法,并提供相应的代码示例。
## 1. 准备数据
在进行模型评估之前,我们首先需要准备数据集。数据集通常包含两个部分:训练集和测试集。训练集用于训练模型,而测试集用于评估模型的性能。
```p
原创
2023-08-17 03:06:41
392阅读
## 了解LR模型在Java中的应用
LR模型(Logistic Regression)是一种线性分类模型,常用于解决二分类问题。在Java中,我们可以通过使用开源的机器学习库来实现LR模型,例如Apache Mahout或者Weka。下面我们将介绍如何在Java中使用LR模型进行分类任务。
### LR模型简介
LR模型是一种广义线性模型,它使用逻辑函数(Logistic Function
原创
2024-02-25 05:21:47
144阅读
python中的数据是用对象来进行表示的,对象间是通过引用来进行传递的。每个对象都有各自的编号、类型和值。一个对象被创建后,它的编号就绝不会改变;你可以将其理解为该对象在内存中的地址。对象的类型决定了对象所具有的操作,例如对于list类型的对象,可以进行迭代,而整型对象是不可以的。对于对象的值而言,有些对象的值是可以进行改变的,而有些对象的值是不可改变的,这在后面会进行介绍。对于a = 10,创建
转载
2023-09-19 05:51:48
94阅读
模型评估方法一、导入第三方库导入相关第三方库,以及设置横纵坐标属性import numpy as np
import os
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['xtick.labelsize'] =
转载
2024-06-28 18:47:09
149阅读
一、LWR简介 Locally Weighted Regression, LWR,局部加权回归使一种非参数方法(Non-parametric)。在每次预测新样本时会重新训练临近的数据得到新参数值。意思是每次预测数据需要依赖训练训练集,所以每次估计的参数值是不确定的。局部加权回归优点:需要预测的数据仅与到训练数据的距离有关,距离越近,关系越大,反之越小;可以有效避免欠拟合,减小了较远数据的干扰,仅与
转载
2023-06-30 21:05:13
528阅读
前言:为防止原作者文章丢失以及方便本人查找,仅作记录,非原创。混淆矩阵通常用于二分类模型。其每一列代表预测值,每一行代表的是实际的类别。 准确率准确率是指我们的模型预测正确的结果所占的比例。 Name 预测值真实值TP Y Y TNNNFP Y NFNNY精确率所
转载
2023-12-03 16:32:19
83阅读
经验误差与过拟合经验误差:我们把学习器的实际预测输出与样本的真实输出之间的差异称为误差,学习器在训练集上的误差称为训练误差或经验误差过拟合:学习器把训练样本学的太好了,很可能把已经训练的样本自身的一些特点当作了所有潜在样本都会具有的一般性质,这样会导致泛化能力的下降。这种现象在机器学习中称为过拟合。与过拟合相对的叫欠拟合。评估方法1.留出法留出法是将数据集分为两个互斥的集合,其中一个作为训练集S,
转载
2023-08-21 18:12:12
823阅读
在时间序列问题上,机器学习被广泛应用于分类和预测问题。当有预测模型来预测未知变量时,在时间充当独立变量和目标因变量的情况下,时间序列预测就出现了。预测值可以是潜在雇员的工资或银行账户持有人的信用评分。任何正式引入统计数据的数据科学都会遇到置信区间,这是某个模型确定性的衡量标准。因此,预测一段时间内某些数据的价值需要特定的技术,并且需要多年的发展。由于每种都有其特殊用途,必须注意为特定应用选择正确的
转载
2023-07-08 14:48:07
172阅读
###基础概念
在建模过程中,由于偏差过大导致的模型欠拟合以及方差过大导致的过拟合的存在,为了解决这两个问题,我们需要一整套方法及评价指标。其中评估方法用于评估模型的泛化能力,而性能指标则用于评价单个模型性能的高低。####泛化性能模型的泛化性能是由学习算法的能力,数据的充分性及学习任务本身的难度所决定的,良好的泛化性能代表了较小的偏差,即算法的期望预测结果与真实结果的偏离程度,同时还要有较小的
转载
2023-12-09 12:38:22
89阅读
# Python Prophet模型评估
时间序列预测在许多领域中都具有重要意义,尤其是在经济、金融和生产等领域。Facebook开源的Prophet模块是一种强大的工具,可以帮助用户快速构建和评估时间序列预测模型。本文将介绍如何使用Python的Prophet库进行时间序列预测,并对模型进行评估。我们还将使用关系图和流程图以增强理解。
## 什么是Prophet?
Prophet是一个用于
原创
2024-09-05 04:13:31
296阅读
在本文中,我们将学习如何计算资本资产定价模型 (CAPM) 并获得贝塔系数。资本资产定价模型(Capital Asset Pricing Model 简称CAPM)是由美国学者于1964年在资产组合理论和资本市场理论的基础上发展起来的,主要研究证券市场中资产的预期收益率与风险资产之间的关系,以及均衡价格是如何形成的,是现代金融市场价格理论的支柱,广泛应用于投资决策和公司理财领域。CAPM 被认为是
# ARIMA模型评估入门指南
ARIMA(自回归积分滑动平均)模型是时间序列分析中的一种广泛应用的模型。在本文中,我们将带领刚入行的开发者理解如何在Python中评估ARIMA模型。以下是整个流程的概述:
## 流程概述
| 步骤 | 描述 |
|-------------|-----------------