http://pythonhosted.org/lda/getting_started.htmlhttp://radimrehurek.com/gensim/
转载
2015-04-27 18:19:00
125阅读
2评论
主题模型主题模型就是利用大量已知的P(w|d)信息,训练出P(c|d) 和P(w|c)。 LDA模型LDA(Latent Dirichlet Allocation)是一种文档主题生成模型,也称为一个三层贝叶斯概率模型,包含词、主题 和文档三层结构。所谓生成模型,就是说,我们认为一篇文章的每个词都是通过“文章以一定概率选择了某个主题,并从这个主题中以一定概率选择某个
转载
2024-01-26 13:41:25
126阅读
图解NLP模型发展:从RNN到Transformer 自然语言处理 (NLP) 是深度学习中一个颇具挑战的问题,与图像识别和计算机视觉问题不同,自然语言本身没有良好的向量或矩阵结构,且原始单词的含义也不像像素值那么确定和容易表示。一般我们需要用词嵌入技术将单词转换为向量,然后再输入计算机进行计算。词嵌入可用于多种任务,例如情感分类、文本生成、名称实体识别或机器翻译等。它以一种巧妙的处理方式,让模
转载
2024-02-19 21:01:59
51阅读
LDA模型是NLP中很基础也是大家广为熟知的模型,在面试过程也经常遇到。本文简单讲述下其大致流程。1 LDA 简介首先,我们来感受下LDA是什么,什么是LDA模型?看来,不同人在不同场景下对LDA的认识,那我们看下百科的解释:LDA(Latent Dirichlet Allocation)是一种文档主题生成模型,也称为一个三层贝...
原创
2023-05-18 11:31:02
273阅读
文章目录相似度计算方法1. 文本距离1.1 编辑距离(Edit Distance)1.2 最长公共子串、最长公共子序列(Long Common Subsequence,LCS)1.3 句向量表示(Word Averaging Model,WAM)1.4 WMD1.5 BM252. 统计指标2.1 Cosine Similarity2.2 Jaccard Similarity2.3 Pearson
转载
2024-04-26 14:57:21
135阅读
特征选择(亦即降维)是数据预处理中非常重要的一个步骤。对于分类来说,特征选择可以从众多的特征中选择对分类最重要的那些特征,去除原数据中的噪音。主成分分析(PCA)与线性判别式分析(LDA)是两种最常用的特征选择算法。关于PCA的介绍,可以见我的另一篇博文。这里主要介绍线性判别式分析(LDA),主要基于Fisher Discriminant Analysis with Kernals[
转载
2024-01-13 22:43:19
363阅读
引言我们经常会听到LDA文本主题模型,经常用于文本分类。LDA由Blei, David M.、Ng, Andrew Y.、Jordan于2003年提出,用来推测文档的主题分布。它可以将文档集中每篇文档的主题以概率分布的形式给出,从而通过分析一些文档抽取出它们的主题分布后,便可以根据主题分布进行主题聚类或文本分类。LDA全称隐含狄利克雷分布(Latent Dirichlet Allocation),
转载
2024-01-28 06:58:42
150阅读
主题模型+TF-IDF提取文本的关键词前言理论代码0. 加载依赖包1. 主题模型类定义2. 数据预处理3. 构建关键词字典,提取给定数据集的关键词4. 主函数入口备注结论 前言如题,本文是LDA(Latent Dirichlet Allocation)主题模型的第二篇,第一篇是 折肘法+困惑度确定LDA主题模型的主题数。在上一篇文章中,简单介绍LDA模型的概念和LDA主题模型的主题数的确定方法-
转载
2023-10-01 16:40:01
199阅读
这段时间对LDA比較感兴趣,尝试在工作中使用它。平时做想法的高速验证,都用的是“GibbsLDA++-0.2”,一个c实现版本号的LDA。这两天用c++ stl自己写了一个单机版的LDA,初衷例如以下: 1. “GibbsLDA++-0.2”虽说号称是最popular的LDA工具包。只是依旧有明显的
转载
2017-05-27 18:50:00
192阅读
2评论
目录
1.sklearn中LDA的简单使用方法
2.维度不一致问题
1.sklearn中LDA的简单使用方法
最近在对数据进行预处理的过程中,使用了有监督的降维方式——线性判别分析(LDA)。直接能通过调用sklearn提供的接口就能实现。具体导入方式如下:
from sklearn.discriminant_analysis impo
转载
2024-04-05 00:00:48
56阅读
目录一、数据清洗1.导入必要的库 2.创建停用词表3. 对句子进行中文分词4. 给出文档路径5.将结果输出保存并且打印处理过程二、转换数据格式1.将处理完毕的数据读取查看2.创建data3. 将评论数据按行写入data中的“评论”一列4.读取评分数据5.将评分数据以逗号形式分割6.将评分数据作为label按行写入data中的“评分”一列7.查看数据,并将数
转载
2024-04-01 06:34:41
107阅读
如何建立专门领域的语言模型?理解了这个自然语言模型怎么用RNN来建立以后,建立一个专门的领域语言模型那就非常简单了,其实就是需要把这个领域特有的大量的语料数据放到训练里面来,最后出来的就是这个领域所特有的语言模型。以会计家园和软件的服务社区为基础,利用上面几十万个问题和答案,在去掉敏感数据的情况下,训练出适合于在财务领域使用的语言模型。举例说明,报销差旅费,这是在会计领域经常使用的语言,比如“报销
转载
2024-06-04 18:57:31
57阅读
建议的程序员学习LDA算法的步骤
这一阵为了工作上的关系,花了点时间学习了一下LDA算法,说实话,对于我这个学CS而非学数学的人来说,除了集体智慧编程这本书之外基本没怎么看过机器学习的人来说,一开始还真是摸不太到门道,前前后后快要四个月了,算是基本了解了这个算法的实现,记录一下,也供后来人快速入门做个参考。 一开始直接就下了Blei的原始的那篇论文来看,但是看了个开头就被Dirichl
转载
2024-08-12 17:21:15
92阅读
Latent Dirichlet Allocation
David.M.Blei
Andrew.Y.Ng
Michael.I.Jordan
JMLR2003
(可google到)
有两种方法设计分类器:
1. discriminative model,就是由样本直接设计判别函数,例如SVM;
2. generative model,就是
转载
2024-05-22 20:45:50
34阅读
1.LDA主题模型困惑度 这部分参照:LDA主题模型评估方法–Perplexity,不过后面发现这篇文章Perplexity(困惑度)感觉写的更好一点,两篇都是翻译的维基百科。 perplexity是一种信息理论的测量方法,b的perplexity值定义为基于b的熵的能量(b可以是一个概率分布,或者概率模型),通常用于概率模型的比较 wiki上列举了三种perplex
转载
2023-12-28 11:11:10
143阅读
对于SEOr每天面对的挑战来自于搜索引擎的排序算法,因为这个算法是对搜索词汇在结果页中排名到底的重要依据,并且搜索引擎通过构建一个可学习的模型来识别页面上的文本内容。LDA算法- 主题建模&分析 LDA算法公式: 为了便于理解这里有个简化的形式: 我们来尝试解释一下,主题词的机会= 该主题所在文档的出现频次X 改主题词使用的频次 ;&n
说明 :本文为个人随笔记录,目的在于简单了解LDA的原理,为后面详细分析打下基础。 一、LDA的原理LDA的全称是Linear Discriminant Analysis(线性判别分析),是一种supervised learning。LDA的原理:将带上标签的数据(点),通过投影的方法,投影到维度更低的空间中,使得投影后的点,会形成按类别区分,一簇一簇的情况,相同类
转载
2023-06-12 17:46:24
140阅读
文章目录特征工程什么是特征工程数据预处理缺失值的处理删除法填补法Pandas填充Sklearn填充数据归一化什么是归一化归一化原理为什么要用归一化什么算法需要进行归一化sklearn库归一化处理归一化存在的问题数据标准化什么是标准化标准化原理为什么要用标准化sklearn库标准化处理标准化和归一化对比特征抽取字典特征数据提取文本特征数据提取TF-IDF 做比赛或者做项目的时候,绞尽脑汁考虑到了
转载
2024-06-19 09:01:52
56阅读
以前LDA是用来分类的,PCA是用来降维的。PCA的降维是为了减少后续计算量,本身对于区分不同的类的能力并没有提升。PCA是无监督的,而LDA是能把不同的类往一个最佳的方向去投影,从而使两类之间的距离最大,达到易于区分的目的,LDA是有监督。下面这篇博文很好的讲述了LDA的算法的原理,很值得一读。
==============================================
转载
2024-06-07 14:05:21
55阅读
前言:本文用到的方法叫做主题建模(topic model)或主题抽取(topic extraction),在机器学习的分类中,它属于非监督学习(unsupervised machine learning)。它是文本挖掘中常用的主题模型,用来从大量文档中提取出最能表达各个主题的一些关键词。 主题模型定义(维基百科):在机器学习和自然语言处理等领域是用来在一系列文档中发现抽象主题的一种统计模型。主题
转载
2024-02-22 15:41:03
146阅读