Background在使用flink处理数据的时候,需要从mysql获取基础的配置信息去解析收到的数据;第一种方案使用缓存,程序启动时从mysql读取配置信息加载到缓存,后面定时更新缓存,解析数据时从缓存中获取配置信息,但这种方法存在很多问题,首先会增加数据库的负载,同时缓存更新及时性不佳;第二种方案使用flink-cdc加广播流,通过mysql日志文件获取数据,减少对数据库的负载,提高数据的一致
目录概念标识和视图临时和永久表表定义创建 table 对象创建 sql 视图catalog什么是 catalog如何理解 hive catalog 概念标识标识由3部分组成:catalog name (常用于标识不同的“源”, 比如 hive catalog, inner catalog 等)database name(通常语义中的“库”)table name(通常语义中的“
转载 2024-04-15 23:32:42
48阅读
Flink广播状态假设存在这样一种场景,一个是用户行为数据,一个是规则数据,要求通过规则去匹配用户行为找到符合规则的用户,并且规则是可以实时变更的,在用户行为匹配中也能根据规则的实时变更作出相应的调整。这个时候就可以使用广播状态,将用户行为数据看做是一个流userActionStream,规则数据也看做是一个流ruleStream,将ruleStream流中数据下发到userActionStre
原创 2021-02-06 13:52:31
568阅读
是数仓中的一个概念,中的维度属性是观察数据的角度,在建设离线数仓的时候,通常是将与事实进行关联构建星型模型。在实时数仓中,同样也有与事实的概念,其中事实通常存储在kafka中,通常存储在外部设备中(比如MySQL,HBase)。对于每条流式数据,可以关联一个外部数据源,为实时计算提供数据关联查询。可能是会不断变化的,在JOIN时,需指明这条记录关联快照的时
转载 2023-09-04 10:49:37
192阅读
文章目录背景LookupableTableSource实例讲解源码解析JdbcTableSourceJdbcLookupFunction 背景在流式计算中,是一个很常见的概念,一般用于sql的join中,对流式数据进行数据补全,比如我们的source stream是来自日志的订单数据,但是日志中我们只是记录了订单商品的id,并没有其他的信息,但是我们把数据存入数仓进行数据分析的时候,却需要商
转载 2023-09-25 13:33:44
211阅读
        流计算中一个常见的需求就是为数据流补齐字段。因为数据采集端采集到的数据往往比较有限,在做数据分析之前,就要先将所需的维度信息补全。比如采集到的交易日志中只记录了商品 id,但是在做业务时需要根据店铺维度或者行业纬度进行聚合,这就需要先将交易日志与商品进行关联,补全所需的维度信息。这里所说的与数据
转载 2024-01-26 09:33:52
102阅读
1、ETL背景在我们实时数仓日常工作中,经常会有一些实时的需求,这些需求往往都是一些拉宽的需求。为了给实时数仓来进行OLAP对来进行Ad-hoc查询,但是我们工作中一些维度的数据是会发生变化的,可能是缓慢变化维度。那么这个时候就需要进行flink连接其他数据源来进行查询。那么这个时候我们肯定可以想到就是来一条查一次,这个是肯定可以做到的。但是在大数据场景下,我们是不是会觉得有点慢呢?我们是否有更
转载 2023-07-11 16:58:08
595阅读
是数仓中的一个概念,中的维度属性是观察数据的角度,在建设离线数仓的时候,通常是将与事实进行关联构建星型模型。在实时数仓中,同样也有与事实的概念,其中事实通常存储在kafka中,通常存储在外部设备中(比如MySQL,HBase)。对于每条流式数据,可以关联一个外部数据源,为实时计算提供数据关联查询。可能是会不断变化的,在JOIN时,需指明这条记录关联快照的时
转载 2023-07-31 21:33:03
309阅读
通过本文你能 get 到以下知识:Flink 常见的一些关联的案例常见的方案及每种方案适用场景,优缺点案例:broadcast 实现或配置的实时更新一、案例分析服务在 Flink 中是一个经常遇到的业务场景,例如:客户端上报的用户行为日志只包含了城市 Id,可是下游处理数据需要城市名字商品的交易日志中只有商品 Id,下游分析数据需要用到商品所属的类目物联网温度报警的场景中,处理的是
作者:腾讯云流计算 Oceanus 团队流计算 Oceanus 简介流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。本文将您详
概要往往我们在做flink任务计算的时候,需要动态的匹配规则,但是我们又不能每次修改都去重新部署服务,所以我们这里需要借助于flink的动态广播状态机制,来实时的处理我们的规则变化 Working with State描述了运算符状态,该状态在恢复时均匀分布于运算符的并行任务之间,或unioned,使用整个状态初始化恢复的并行任务。描述Flink支持的第三种操作符状态是广播状态(Broadcast
转载 2023-11-06 19:37:43
95阅读
简介  算子状态中有一类很特殊,就是广播状态(BroadcastState)。从概念和原理上讲,广播状态非常容易理解:状态广播出去,所有并行子任务的状态都是相同的;并行度调整时只要直接复制就可以了。然而在应用上,广播状态却与其他算子状态大不相同。本节就专门来讨论一下广播状态的使用。一、基本用法  让所有并行子任务都持有同一份状态,也就意味着一旦状态有变化,所以子任务上的实例都要更新。什么时候会用到
转载 2024-03-13 17:50:16
75阅读
文章目录一、广播状态介绍1.1、什么是广播状态1.2、广播状态的动态模型评估三、API介绍3.1、BroadcastProcessFunction 和 KeyedBroadcastProcessFunction3.2、重要注意事项四、案例-实现配置动态更新4.1、逻辑步骤4.2、代码实现4.2.1、java实现4.2.2、scala实现参考: Flink 从 1.5.0 版本开始引入了一种新的状
转载 2023-11-13 22:31:16
172阅读
第一章 Flink简介 1.1 初识Flink Flink起源于Stratosphere项目,Stratosphere是在2010~2014年由3所地处柏林的大学和欧洲的一些其他的大学共同进行的研究项目,2014年4月Stratosphere的代码被复制并捐赠给了Apache软件基金会,参加这个孵化项目的初始成员是Stratosphere系统的核心开发人员,2014年12月,Flink一跃成为Ap
转载 2024-06-18 11:05:42
82阅读
衡量指标 总体来讲,关联有三个基础的方式: 实时数据库查找关联(Per-Record Reference Data Lookup)、预加载关联(Pre-Loading of Reference Data)和变更日志关联(Reference Data Change Stream),而根据实现上的优化可以衍生出多种关联方式,且这些优化还可以灵活组合产生不同效果(不过为了简单性这里
FLink-14-Flink 状态State的TTL管理Flink 状态State的TTL管理1.updateTtlOnReadAndWrite()/updateTtlOnCreateAndWrite()2.StateTtlConfig.StateVisibility.NeverReturnExpired/ReturnExpiredIfNotCleanedUp3.cleanupStrategie
一 场景介绍        在维度模型中,数据通常被划分为维度和事实两大阵营,而维度通常是渐变(Kimball维度模型领域通常称呼这种维度为缓慢变化维度或者又被称为渐变维度)的,这种场景下,要求我们在建模过程中,要更多的考虑维度版本的变化,保存维度变化的模型可以方便在ETL和应用过程中可以让事实数据匹配自己对应
转载 2024-06-07 09:17:20
166阅读
是数仓中的一个概念,中的维度属性是观察数据的角度,补充事实的信息。在实时数仓中,同样也有与事实的概念,其中事实通常为kafka的实时流数据,通常存储在外部设备中(比如MySQL,HBase)。对于每条流式数据,可以关联一个外部数据源,为实时计算提供数据关联查询。可能是会不断变化的,在JOIN时,需指明这条记录关联快照的时刻。 本文主要介绍1、流的区别2
转载 2023-08-31 20:22:50
386阅读
整理:张宋庆(Flink 社区志愿者)校对:李庆(Flink 社区志愿者)摘要:本文由阿里巴巴高级运工程师杨阳(时溪)分享,主要介绍阿里巴巴常见问题诊断模块与思路,内容涵盖以下几个方面:常见运问题问题处理方式作业生命周期1.常见运问题1.1 作业运行环境本文中介绍的作业运行环境主要是在阿里巴巴集团内,构建在 Hadoop 生态之上的 Flink 集群,包含 Yarn、HDFS、ZK 等组件;
转载 2024-05-10 20:30:53
35阅读
本示例知识点1.学习如何管理和运行Flink Jobs 2.如何部署和监视应用程序 3.体验Flink如何从作业失败中恢复(重点) 4.执行日常操作任务,例如升级和缩放命令: docker-compose 常用命令 docker-compose  exec kafka kafka-console-consumer.sh --bootstrap-server localhost:9092
转载 2024-05-26 16:37:56
17阅读
  • 1
  • 2
  • 3
  • 4
  • 5