#include "cv.h" #include "highgui.h" #include "stdafx.h" #include <ml.h> #include <iostream> #include <fstream> #include <string> #include <vector> using namespace cv; u
转载 2016-04-17 19:46:00
187阅读
2评论
1. 理论基础使用OpenCv进行行人检测的主要思想: HOG + SVM HOG: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。HOG特征通过计算和统计图像局部区域的梯度方向直方图来构成特征. SVM: (Support Vector Machine)指的是支持向量机,是...
原创 2021-09-01 10:58:52
4228阅读
含trainData/trainLabels和testData/testLabels % 图像预处理函数 functio ...
转载 18天前
400阅读
1,原理就是把一张张连续的静态视频进行检测后,写入videos中。2,代码//// Created by MacBook Pro on 2019-06-10.//#include <stdio.h>#include <iostream>#include <fstream>#include <opencv2/core/core....
原创 2022-05-30 15:17:19
232阅读
先暂时把opencv3的具有参考价值的文章放一下: 1、主要参考这个文章,但是他的是opencv2
原创 2021-07-29 14:05:41
434阅读
正样本来源是INRIA数据集中的96*160大小的人体图片,使用时上下左右都去掉16个像素,截取中间的64*128大小的人体。负样本是从不包含人体的图片中随机裁取的,大小同样是64*128(从完全不包含人体的图片中随机剪裁出64*128大小的用于人体检测的负样本)。
转载 2013-11-14 21:07:00
268阅读
 在人脸检测中,我们一般利用训练好的XML文件去预测图像中是否存在人脸,那么XML文件是如何得到的,按照人脸的XML文件,它应该是提取样本的Haar特征,利用某个机器学习方法,最终得到的。本文主要讨论如何得到自己的XML文件。         在机器学习中,首先应该是采集样本,然后提取他们的特征,本人主要利用
转载 2023-06-09 04:30:19
62阅读
1,切割正、负样本图像,并把图片名存为txt#include <iostream>#include <iostream>#include <fstream>#include <stdlib.h> //srand()和rand()函数#include <time.h> //time()函数#include <openc...
原创 2022-05-26 08:44:24
124阅读
1评论
目录HOG是什么?HOG vs SIFTHOG步骤HOG在检测行人中的方式Ope
原创 2022-06-27 23:40:42
845阅读
1评论
1,实例代码#include <iostream>#include <fstream>#include <opencv2/opencv.hpp>#include <stdio.h>#include "dataset.h"#include <opencv2/core/core.hpp>#include <opencv...
原创 2022-05-26 08:44:18
390阅读
使用HOG+SVM对数字进行分类模型训练与测试。
原创 2023-03-31 10:29:41
420阅读
加载opencv自带的行人检测器,进行识别代码import osimport sysimport cv2import loggingimport numpy as nphog = cv2.HOGDescriptor()hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())pwd = os.getcwd()test_dir = os.path.join(pwd, 'TestData')cv2.namedWindo
原创 2021-07-29 11:33:14
453阅读
此opencv系列博客只是为了记录本人对<<opencv3计算机视觉-pyhton语言实现>>的学习笔记,所有代码在我的github主页https://github.com/RenDong3/OpenCV_Notes.欢迎star,不定时更新...推荐前辈链接:https://www.cnblogs.com/zyly/p/9651261.html,解释的非常清晰...
原创 2021-09-01 15:11:08
2450阅读
1,实现结果从上图中可以看出检测的效果,都十分的棒!2,代码我把代码放到了github仓库,有兴趣
原创 2022-05-26 12:04:22
428阅读
在2005年CVPR上,来自法国的研究人员NavneetDalal和BillTriggs提出利用Hog进行特征提取,利用线性SVM作为分类器,从而实现行人检测。而这两位也通过大量的测试发现,Hog+SVM是速度和效果综合平衡性能较好的一种行人检测方法。后来,虽然很多研究人员也提出了很多改进的...
qt
原创 2021-07-16 15:02:31
578阅读
基于传统图像处理的目标检测与识别(HOG+SVM附代码)较全面的HOG+SVM目标识
采用Python、numpy库实现图像HOG特征的提取,主要用于分析HOG特征的具体算法流程。 参考资料: HOG的经典论文:Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEE
转载 2023-07-05 10:38:31
174阅读
原创 2023-01-12 16:07:16
86阅读
通过计算和统计图像局部区域的梯度直方图来构成特征,先计算图片某一区域中不同方向上梯度的值,然后进行累积,得到直方图,这个直方图呢,就可以代表这块区域了,也就是作为特征,可以输入到分类器里面了。 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机
转载 2017-07-30 17:05:00
141阅读
2评论
1. HOG特征简介特征描述符是图像或图像补丁的表示形式,它通过提取有用信息并丢弃无关信息来简化图像。通常,特征描述符将大小W x H x 3(通道)的图像转换为长度为n的特征向量/数组。对于 HOG 特征描述符,输入图像的大小为 64 x 128 x 3,输出特征向量的长度为 3780。在HOG特征描述符中,梯度方向的分布(直方图)被用作特征。图像的渐变(x和y导数)很有用,因为边缘和角落(强度
转载 2024-04-12 03:46:13
58阅读
  • 1
  • 2
  • 3
  • 4
  • 5