Hadoop原理1. HDFS写流程1.client通过 Distributed FileSystem 模块向NameNode请求上传文件,NameNode会检查目标文件是否存在,路径是否正确,用户是否有权限。 2.NameNode向client返回是否可以上传,同时返回三个离client近的DataNode节点,记为DN1/DN2/DN3。 3.client通过DFSOutPutStream进行
Apache Hadoop YARN (Yet Another Resource Negotiator,另一种资源协调者)是一种新的 Hadoop 资源管理器,它是一个通用资源管理系统,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。介绍: ①YARN(Yet Another Resource Negotiator) ②通用的资源管理平台
JobConf.setNumMapTasks(n)是有意义的,结合block size会具体影响到map任务的个数,详见FileInputFormat.getSplits源码。假设没有设置mapred.min.split.size,缺省为1的情况下,针对每个文件会按照min (totalsize[所有文件总大小]/mapnum[jobconf设置的mapnum], blocksize)为大小来拆分
转载 2023-07-21 14:37:49
213阅读
MapReduce各个执行阶段(1)MapReduce框架使用InputFormat模块做Map前的预处理,比如验证输入的格式是否符合输入定义;然后,将输入文件切分为逻辑上的多个InputSplit,InputSplit是MapReduce对文件进行处理和运算的输入单位,只是一个逻辑概念,每个InputSplit并没有对文件进行实际切割,只是记录了要处理的数据的位置和长度。(2)因为InputSp
Hadoop的目录文件结构:.|-- LICENSE.txt|-- NOTICE.txt|-- README.txt|-- bin|-- conf|-- etc|-- export_hadoop.sh|-- hadoop-0.23.0-gridmix.jar|-- hadoop-0.23.0-streaming.jar|-- hadoop-mapreduce-0.23.0-sources.jar|
hadoop 基础:hadoop的核心是应该算是map/reduce和hdfs,相当于我们要处理一个大数据的任务(并且前提是我们只采用普通的PC服务器),那么完成这个任务我们至少做两件事情,一件是有一个环境能够存储这个大数据(即hdfs),另外一件就是有一个并发的环境处理这些大数据(即map/reduce)。• map/reduce计算模型:map/reduce理解为一个分布式计算框架,它由Job
转载 2023-09-22 13:26:27
49阅读
map和reducehadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务就没有并行执行,但是map和reduce的数量也不能过多,数量过多虽然可以提高任务并行度,但是太多的map和reduce也会导致整个hadoop框架因为过度的系统资源开销而使任务失败。所以用户在提交m
转载 2023-09-20 07:14:30
29阅读
map和reducehadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务就没有并行执行,但是map和reduce的数量也不能过多,数量过多虽然可以提高任务并行度,但是太多的map和reduce也会导致整个hadoop框架因为过度的系统资源开销而使任务失败。所以用户在提交
转载 2023-09-01 08:20:07
87阅读
map  把Job分割成map和reduce 合理地选择Job中 Tasks数的大小能显著的改善Hadoop执行的性能。增加task的个数会增加系统框架的开销,但同时也会增强负载均衡并降低任务失败的开销。一个极 端是1个map、1个reduce的情况,这样没有任务并行。另一个极端是1,000,000个map、1,000,000个reduce的情况,会由于 框架的开销过大而使得系统资源耗
# Hive D Reduce阶段卡住的探讨与解决方案 在使用Apache Hive进行数据处理时,用户可能会遇到任务在D Reduce阶段卡住的情况。这种现象通常是由于多种原因导致的,包括资源分配不足、数据倾斜、网络延迟、以及简单的代码错误等。本文将对D Reduce阶段卡住的原因进行分析,并提供一些解决方案和代码示例,帮助用户更好地理解和处理这些问题。 ## Hive作业执行流程 在Hi
原创 2024-09-15 03:23:35
119阅读
MapReduce是一种分布式计算模型,是Google提出来的,主要用于搜索领域,解决海量数据的计算问题。MapReduce的全套过程分为三个大阶段,分别是Map、Shuffle和Reduce。结合多篇资料,我最终确定划分11个小步骤来描述这个过程,在后续的内容中我也会结合一部分源码来进行剖析
原创 2023-06-20 10:41:27
407阅读
 笼统的说,Hive中的Join可分为Common Join(Reduce阶段完成join)和Map Join(Map阶段完成join)。一、Hive Common Join如果不指定MapJoin或者不符合MapJoin的条件,那么Hive解析器会将Join操作转换成Common Join,即:在Reduce阶段完成join.整个过程包含Map、Shuffle、Reduce阶段。Map
转载 2023-07-12 09:58:40
221阅读
haoop的起源Hadoop是Apache软件基金会的顶级开源项目,是由原雅虎公司Doug Cutting根据Google发布的学术论文而创建的开源项目。Doug Cutting被称为Hadoop之父,他打造了目前在云计算和大数据领域里如日中天的HadoopHadoop的发音是[hædu:p],Hadoop 这个名字不是一个缩写,而是一个虚构的名字。Doug Cutting解释Hadoop
转载 2023-10-02 20:57:52
70阅读
1. 调整reduce个数(方式1)-- 每个reduce处理的数据量(默认为256M) set hive.exec.reducers.bytes.per.reducer=256000000; -- 每个job允许最大的reduce个数 set hive.exec.reducers.max=1009;-- 计算reduce个数公式 reduce个数=min(参数2,总输入数量/参数1) 注意 :
转载 2023-06-12 20:58:50
88阅读
cpu数目 一个job会使用tasktracker的reduce任务槽数mapred.reduce.tasks = cpu数目>2?cpu数目*0.5:1 一个tasktracker最多同时运行reducer任务数量mapred.tasktracker.reduce.tasks.maximum   
原创 2023-04-20 15:31:19
82阅读
最近一直太忙,都没时间写博客了。首先是平时需要带我的一个哥们,他底子比我稍弱,于是我便从mybatis、spring、springMVC、html、css、js、jquery一个一个的教他,在教的过程中笔者也发现了很多之前自己没有弄明白的问题,所以说想把一样东西学好并不容易。另外笔者也参与了公司的大数据项目,学会怎么写一个MR,以及hdfs、hbase、hive、impala、zookeeper的
关于大数据的处理,Hadoop并非唯一的选择,但是在一定程度上来说,是最适合一般企业的选择。这也是Hadoop成为现在主流选择的原因之一,而随着Hadoop在实时数据处理上的局限出现,Spark的呼声高了起来。Hadoop与Spark,成为了常常被拿来做比较的对象。 Hadoop作为主流运用的大数据处理系统,是有着坚实的基础的,Hadoop生态系统中在不断发展中也在不断完善,形成了完备的数据处理环
Hadoop Multi Node Cluster的安装Hadoop Multi Node Cluster 规划如下图一台主要的计算机master,在HDFS担任NameNode角色,在MapReduce2(YARN)担任ResourceManager角色。多台辅助计算机data1、data2、data3,在HDFS担任DataNode角色、在MapReduce2(YARN)担任NodeManag
转载 2023-11-19 20:44:00
44阅读
Hadoop是一个大数据处理平台,也是一个集群,能够对海量数据进行存储和运算。MapReduce是Hadoop众多组件当中的一个。Hadoop作为一个分布式系统,可以将不同的机器设备连接起来进行存储,也就是人们常说的HDFS,这也是Hadoop的一个构成部分;而hadoop的另一个构成部分就是MapReduce了,前者负责数据的存储,而后者负责数据的运算,而且可以在MapReduce上进行编程开发
MapReduce框架的优势是可以在集群中并行运行mapper和reducer任务,那如何确定mapper和reducer的数量呢,或者说Hadoop如何以编程的方式控制作业启动的mapper和reducer数量呢?在《Hadoop-2.4.1学习之Mapper和Reducer》中曾经提及建议reducer的数量为(0.95~1.75 ) * 节点数量 * 每个节点上最大的容器数,并可使用方法
转载 2024-06-14 22:09:44
18阅读
  • 1
  • 2
  • 3
  • 4
  • 5