本文主要介绍在流式场景中 join 的实战。大家都知道在使用 SQL 进行数据分析的过程中,join 是经常要使用的操作。在离线场景中,join 的数据集是有边界的,可以缓存数据有边界的数据集进行查询,有Nested Loop/Hash Join/Sort Merge Join 等多表 join;而在实时场景中,join 两侧的数据都是无边界的数据流,所以缓存数据集对长时间 job 来说,存储和查
转载
2023-08-18 16:37:48
201阅读
0、前言 最近有个需求,需要使用flinksql读写redis,由于官网上并没有redis的connector,在网上找了很久,开源的几个connector又没法满足要求,所有这里就自己动手实现了一个。已经适配了各个版本的flink,从flink1.12到flink1.15。 简单介绍一下功能吧:将redis作为流表时支持BLPOP、BRPOP、LPOP、RPOP、SPOP等命令;使用lua脚
转载
2023-06-30 13:11:52
151阅读
目录表概念表标识表和视图临时表和永久表表定义创建 table 表对象创建 sql 表视图catalog什么是 catalog如何理解 hive catalog 表概念表标识表标识由3部分组成:catalog name (常用于标识不同的“源”, 比如 hive catalog, inner catalog 等)database name(通常语义中的“库”)table name(通常语义中的“表
转载
2024-04-15 23:32:42
48阅读
维表是数仓中的一个概念,维表中的维度属性是观察数据的角度,在建设离线数仓的时候,通常是将维表与事实表进行关联构建星型模型。在实时数仓中,同样也有维表与事实表的概念,其中事实表通常存储在kafka中,维表通常存储在外部设备中(比如MySQL,HBase)。对于每条流式数据,可以关联一个外部维表数据源,为实时计算提供数据关联查询。维表可能是会不断变化的,在维表JOIN时,需指明这条记录关联维表快照的时
转载
2023-09-04 10:49:37
192阅读
文章目录背景LookupableTableSource实例讲解源码解析JdbcTableSourceJdbcLookupFunction 背景在流式计算中,维表是一个很常见的概念,一般用于sql的join中,对流式数据进行数据补全,比如我们的source stream是来自日志的订单数据,但是日志中我们只是记录了订单商品的id,并没有其他的信息,但是我们把数据存入数仓进行数据分析的时候,却需要商
转载
2023-09-25 13:33:44
211阅读
流计算中一个常见的需求就是为数据流补齐字段。因为数据采集端采集到的数据往往比较有限,在做数据分析之前,就要先将所需的维度信息补全。比如采集到的交易日志中只记录了商品 id,但是在做业务时需要根据店铺维度或者行业纬度进行聚合,这就需要先将交易日志与商品维表进行关联,补全所需的维度信息。这里所说的维表与数据
转载
2024-01-26 09:33:52
102阅读
1、ETL背景在我们实时数仓日常工作中,经常会有一些实时的需求,这些需求往往都是一些拉宽的需求。为了给实时数仓来进行OLAP对来进行Ad-hoc查询,但是我们工作中一些维度表的数据是会发生变化的,可能是缓慢变化维度。那么这个时候就需要进行flink连接其他数据源来进行查询。那么这个时候我们肯定可以想到就是来一条查一次,这个是肯定可以做到的。但是在大数据场景下,我们是不是会觉得有点慢呢?我们是否有更
转载
2023-07-11 16:58:08
595阅读
维表是数仓中的一个概念,维表中的维度属性是观察数据的角度,在建设离线数仓的时候,通常是将维表与事实表进行关联构建星型模型。在实时数仓中,同样也有维表与事实表的概念,其中事实表通常存储在kafka中,维表通常存储在外部设备中(比如MySQL,HBase)。对于每条流式数据,可以关联一个外部维表数据源,为实时计算提供数据关联查询。维表可能是会不断变化的,在维表JOIN时,需指明这条记录关联维表快照的时
转载
2023-07-31 21:33:03
309阅读
通过本文你能 get 到以下知识:Flink 常见的一些维表关联的案例常见的维表方案及每种方案适用场景,优缺点案例:broadcast 实现维表或配置的实时更新一、案例分析维表服务在 Flink 中是一个经常遇到的业务场景,例如:客户端上报的用户行为日志只包含了城市 Id,可是下游处理数据需要城市名字商品的交易日志中只有商品 Id,下游分析数据需要用到商品所属的类目物联网温度报警的场景中,处理的是
转载
2024-06-27 06:38:23
264阅读
作者:腾讯云流计算 Oceanus 团队流计算 Oceanus 简介流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。本文将您详
转载
2023-07-27 19:50:59
100阅读
第一章 Flink简介 1.1 初识Flink Flink起源于Stratosphere项目,Stratosphere是在2010~2014年由3所地处柏林的大学和欧洲的一些其他的大学共同进行的研究项目,2014年4月Stratosphere的代码被复制并捐赠给了Apache软件基金会,参加这个孵化项目的初始成员是Stratosphere系统的核心开发人员,2014年12月,Flink一跃成为Ap
转载
2024-06-18 11:05:42
82阅读
衡量指标 总体来讲,关联维表有三个基础的方式:
实时数据库查找关联(Per-Record Reference Data Lookup)、预加载维表关联(Pre-Loading of Reference Data)和维表变更日志关联(Reference Data Change Stream),而根据实现上的优化可以衍生出多种关联方式,且这些优化还可以灵活组合产生不同效果(不过为了简单性这里
转载
2024-05-28 17:16:19
134阅读
FLink-14-Flink 状态State的TTL管理Flink 状态State的TTL管理1.updateTtlOnReadAndWrite()/updateTtlOnCreateAndWrite()2.StateTtlConfig.StateVisibility.NeverReturnExpired/ReturnExpiredIfNotCleanedUp3.cleanupStrategie
转载
2024-04-26 11:05:07
126阅读
维表是数仓中的一个概念,维表中的维度属性是观察数据的角度,补充事实表的信息。在实时数仓中,同样也有维表与事实表的概念,其中事实表通常为kafka的实时流数据,维表通常存储在外部设备中(比如MySQL,HBase)。对于每条流式数据,可以关联一个外部维表数据源,为实时计算提供数据关联查询。维表可能是会不断变化的,在维表JOIN时,需指明这条记录关联维表快照的时刻。 本文主要介绍1、流表和维表的区别2
转载
2023-08-31 20:22:50
386阅读
一 场景介绍 在维度模型中,数据通常被划分为维度和事实两大阵营,而维度通常是渐变(Kimball维度模型领域通常称呼这种维度为缓慢变化维度或者又被称为渐变维度)的,这种场景下,要求我们在维表建模过程中,要更多的考虑维度版本的变化,保存维度变化的维表模型可以方便在ETL和应用过程中可以让事实数据匹配自己对应
转载
2024-06-07 09:17:20
166阅读
# PYTHON redis存储表数据多列的实现步骤
## 引言
在开发过程中,我们经常需要将表数据存储到redis中,并且需要存储多列数据。本文将介绍如何使用PYTHON实现这一功能。
## 步骤
| 步骤 | 操作 | 代码 |
|------|------|------|
| 1 | 导入redis库 | `import redis` |
| 2 | 创建redis连接 | `r =
原创
2024-02-04 10:10:39
90阅读
1. Flink Connectors 介绍Flink 连接器包含数据源输入与汇聚输出两部分。Flink自身内置了一些基础的连接器,数据源输入包含文件、目录、Socket以及 支持从collections 和 iterators 中读取数据;汇聚输出支持把数据写入文件、标准输出(stdout)、标准错误输出(stderr)和 socket。官方地址Flink还可以支持扩展的连接器,能够与第三方系统
转载
2023-08-03 19:29:30
63阅读
## Python 二维表多列拼接一列
在Python中,我们经常需要对数据进行处理和分析。有时候,我们可能需要将多列的数据拼接成一列,以便进一步的处理。本文将介绍如何使用Python拼接二维表中的多列数据,并提供代码示例。
### 问题背景
假设我们有一个二维表格,其中包含多列数据,我们希望将其中的某几列拼接成一列。例如,我们有一个商品销售数据表格,其中包含了商品名称、销售数量和销售额等列
原创
2024-01-25 08:31:15
80阅读
目录1.写在前面2.输出到文件更新模式(Update Mode)代码总结: 3.输出到 Kafka代码总结4.输出到 ElasticSearch5.输出到 MySql1.写在前面TableSink 来实现的。TableSink 是一个通用接口,可以 支持不同的文件格式、存储数据库和消息队列。具体实现,输出表最直接的方法,就是通过 Table.insertInto() 方法将一个 Tabl
转载
2024-04-23 12:54:49
91阅读
整理:张宋庆(Flink 社区志愿者)校对:李庆(Flink 社区志愿者)摘要:本文由阿里巴巴高级运维工程师杨阳(时溪)分享,主要介绍阿里巴巴常见问题诊断模块与思路,内容涵盖以下几个方面:常见运维问题问题处理方式作业生命周期1.常见运维问题1.1 作业运行环境本文中介绍的作业运行环境主要是在阿里巴巴集团内,构建在 Hadoop 生态之上的 Flink 集群,包含 Yarn、HDFS、ZK 等组件;
转载
2024-05-10 20:30:53
35阅读