卷积神经网络(Convolution Neural Network, CNN)在数字图像处理领域取得了巨大的成功,从而掀起了深度学习自然语言处理领域(Natural Language Processing, NLP)的狂潮。2015年以来,有关深度学习NLP领域的论文层出不穷。尽管其中必定有很多附庸风雅的水文,但是也存在很多经典的应用型文章。笔者2016年也发表过一篇关于CNN文本分类
转载 2024-05-22 20:02:47
71阅读
自然语言处理(NLP)和应用 1. 自然语言处理 2. NLP的应用1、自然语言处理       自然语言处理是研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,也是人工智能领域中一个最重要、最艰难的方向。自然语言的理解(two definitions) 第一种是计算机能够将所说的语言映射到计算机内部表示;另一种是基于行为的,你说了一句话
HMM模型介绍由隐状态序列,生成可观测状态的过程。 两个基本假设:第t个隐状态只和前一时刻的t-1隐状态相关,与其他时刻的隐状态无关。在任意时刻t的观测值只依赖于当前时刻的隐状态值,和其他时刻的隐状态无关。HMM模型参数转移概率:t时刻的隐状态qi转移到t+1时刻的隐状态qj的概率。发射概率:t时刻由隐状态qj生成观测状态vk的结果。初始隐状态概率:自然语言序列中第一个字o1的实体标记是qi的概率
       与图像识别不同,自然语言处理中输入的往往是一段语音或者一段文字,输入数据的长短是不确定的,并且它与上下文有很密切的关系,所以常用的是循环神经网络(recurrent neural network,RNN)模型11.1 模型的选择       使用不同输入和不同数据时,分别适用哪种模型以及如何应用(1)一
转载 2024-04-23 16:23:32
46阅读
自然语言处理领域,循环神经网络(RNN)是一种经典而强大的神经网络架构,被广泛应用于序列建模和语言生成任务。本文将深入探讨 RNN 的原理,解释其背后的数学概念,并通过代码示例演示其实现过程。1. 介绍 循环神经网络(RNN)是一种能够处理序列数据的神经网络,其主要特点是引入了循环结构,使得网络能够捕捉序列数据中的时间依赖关系。基于这种能力,RNN 自然语言处理任务中广泛用于语言建模、机器翻
同时,智能的机器也成就了人类,给人类带来了前所未有的应用和价值。随着技术的不断发展,人工智能的相关应用已经融入人类生活的方方面面,如今“AI以将人与人之间的语言推广到人与机器之间的智能语音交互一直以来都是一个备受关注同时也极具挑战性的研究课题。
Go 语言笔记基本概念综述Go 语言将静态语言的安全性和高效性与动态语言的易开发性进行有机结合,达到完美平衡。设计者通过 goroutine 这种轻量级线程的概念来实现这个目标,然后通过 channel 来实现各个 goroutine 之间的通信,这个特性是 Go 语言最强有力的部分。Go 语言像其它静态语言一样执行本地代码,但它依旧运行在某种意义上的虚拟机,以此来实现高效快速的垃圾回收。「切片」
自然语言处理综合应用系统 文章目录前言一、自然语言处理是什么?二、自然语言处理的内容三、自然语言处理综合应用系统1.自然语言处理包2.项目结构3.功能实现总结 前言研究生自然语言处理课程的大作业,不想写综述文章,就做了个系统自然语言处理综合应用系统,功能包括句法分析、文本分词、相似度检测、语义相似度检测、命名实体识别、语义角色标注、文本总结、简繁转换和词云 。提示:以下是本篇文章正文内容,下面案例
1,你现在正在哪个领域学习或工作呢?你用过哪些AI智能工具?AI智能工具的种类非常多,以下是其中一些常见的:机器学习工具:包括Scikit-learn、TensorFlow、Keras等,用于训练和部署机器学习模型。自然语言处理工具:包括NLTK、spaCy、Gensim等,用于处理和分析文本数据。计算机视觉工具:包括OpenCV、PyTorch、TensorFlow等,用于图像和视频数据的分析和
[t
作者:Adit Deshpande  自然语言处理是研究和实现人与计算机之间用自然语言进行有效通信的各种理论和方法。本文主要介绍深度学习自然语言处理中的应用自然语言处理简介 自然语言处理是研究和实现人与计算机之间用自然语言进行有效通信的各种理论和方法。具体的任务包括:问答系统(如Siri、Alexa和Cortana的功能)情感分析(判断某个句子表达的是正面还是负面情绪)图像-
本文介绍了Java中自然语言处理的几个应用案例,包括文字分类、命名实体识别和情感分析。通过使用Apache OpenNLP、Stanford NLP和DL4J等强大的Java库,我们可以高效地实现这些NLP任务。自然语言处理(NLP)是人工智能和计算机科学的重要领域,旨在实现计算机对人类语言的理解、解释和生成。Java中,有许多强大的库和工具可
这篇文章是应老师要求创作的关于自然语言处理自己专业的应用,因为我是计科专业,其应用较为广泛,所以下面就来浅谈自然语言处理应用。 1. 词法分析 基于大数据和用户行为,对自然语言进行中文分词、词性标注、命名识体识别,定位基本语言元素,消除歧义,支撑自然语言的准确理解。中文分词 —— 将连续的自然语言文本,切分成具有语义合理性和完整性的词汇序列词性标注 —— 将自然语言中的每个词,赋予一个词性,如
自然语言处理(NLP)与计算机视觉(CV)一样,是目前人工智能领域里最为重要的两个方向。如何让机器学习方法从文字中理解人类语言内含的思想?本文中,来自 Insight AI 的 Emmanuel Ameisen 将为我们简述绝大多数任务上我们需要遵循的思路。文章选自InsightDataScience,作者:Emmanuel Ameisen,由机器之心编译。 文本数据无处不在无
第四章 应用篇从知识产业角度来看,自然语言处理软件占有重要的地位,专家系统、数据库、知识库,计算机辅助设计系统(CAD)、计算机辅助教学系统(Cal)、计算机辅助决策系统、办公室自动化管理系统、智能机器人等,全都需要自然语言做人机界面。长远看来,具有篇章理解能力的自然语言理解系统可用于机器自动翻译、情报检索、自动标引及自动文摘等领域,有着广阔的应用前景。随着自然语言处理研究的不断深入和发展,应用
转载 2024-04-29 19:05:03
57阅读
机器学习用例以下三个例子介绍了机器学习可如何应用于使用自然语言处理技术的企业模型:客户支持工单分类来自不同媒体渠道(电子邮件、社交网站等等)的工单需要转交给相应的专门人员。大量的工单使得这项任务非常繁冗耗时。如果把机器学习应用于这一场景,便可加快工单分类的速度。结合API和微服务,便可实现对工单的自动分类。如果被正确分类的工单数量足够多,机器学习算法能够不需要支持人员的情况下,直接把工单分发给下
本教程从自然语言处理研究及应用的角度对神经网络模型进行了全面概述,以期使自然语言处理技术能够更快的使入门者掌握。 该教程涵盖了自然语言基础概述、卷积网络、循环、递归网络以及模型变种及相关应用。目录概述参考文献概述        自然语言处理(Natural language processing,NLP)是一种基于智能理论的计算技术,是指对人类语言进行自动分
文章目录1、自然语言处理概述2、自然语言处理入门基础2.1 数学基础2.2 语言学基础2.3 Python基础2.4 机器学习基础2.5 深度学习基础2.6 自然语言处理的理论基础3、自然语言处理的主要技术范畴3.1 语义文本相似度分析3.2 信息检索(Information Retrieval, IR)3.3 信息抽取(Information Extraction)3.4 文本分类(Text
自然语言处理-介绍、入门与应用  根据工业界的估计,仅仅只有21%的数据是以结构化的形式展现的。数据由说话,发微博,发消息等各种方式产生。数据主要是以文本形式存在,而这种方式却是高度无结构化的。使用这些文本消息的例子包括:社交网络上的发言,聊天记录,新闻,博客,文章等等。 尽管我们会有一些高维的数据,但是它所表达的信息我们很难直接获取到,除非它们已经被我们人工地做了处
一、简介 过去几年里,预训练模型计算机视觉和自然语言处理等单模态领域中取得了巨大的成功。大量的研究也表明其有助于下游的单模态任务。研究人员逐步尝试使用预训练模型来解决多模态问题。本文结合2篇综述文章,介绍了多模态预训练模型的最新进展。二、特征抽取1. 图像特征抽取1.1 基于目标检测的区域特征 许多先前的工作利用预训练目标检测器来抽取视觉特征。最常使用的目标检测模型是具有bottom-up at
  • 1
  • 2
  • 3
  • 4
  • 5