Kmeans与Meanshift、EM算法的关系 Kmeans算法是一种经典的聚类算法,在模式识别中得到了广泛的应用,基于Kmeans的变种算法也有很多,模糊Kmeans、分层Kmeans等。Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans的迭代步骤可以看成E步和M步,E:固定参数类别
转载
2024-05-08 15:33:41
65阅读
文章目录EM算法的原理推导及解释前置知识:极大似然估计(Maximum Likelihood)核心部分:期望最大化算法(Expectation Maximum)实例:EM求解“三硬币”模型的完整推导及解释 EM算法的原理推导及解释本质上,EM算法针对于存在明显可疑的隐藏变量z,该变量影响着直观的样本数据的分布情况(即:方差、均值等),但是我们又无法得知和计算出准确的隐藏变量z。于是,我们采用迭代
一.概述 通过概率统计模拟来进行数值计算的方法统称为蒙特卡罗(Monte Carlo)方法,而MCMC方法称为马尔科夫链蒙特卡洛(Markov Chain Monte Carlo)方法。显然,MCMC法为MC法的一种特例。MCMC法是利用马尔可夫链的细致平衡条件进行采样,再通过所采样的样本进行数值计算的一
转载
2023-08-15 16:22:35
198阅读
1、MCMC概述 从名字我们可以看出,MCMC由两个MC组成,即蒙特卡罗方法(Monte Carlo Simulation,简称MC)和马尔科夫链(Markov Chain ,也简称MC)。之前已经介绍过蒙特卡洛方法,接下来介绍马尔科夫链,以及结合两者的采样算法。 2、马尔科夫链 马尔科夫链的概念在很多地方都被提及过,它的核心思想是某一时刻状态转移的概率只依赖于它的前一个状
转载
2023-12-01 20:41:22
78阅读
在 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了详细说明。本文主要针对如何用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。 1. GMM模型: 每个 GMM 由 K 个 Gaussian 分布
转载
2024-01-16 17:32:13
115阅读
# MCMC算法简介及Python实现
## 一、什么是MCMC算法?
马尔科夫链蒙特卡洛(Markov Chain Monte Carlo, MCMC)是一种通过构造马尔科夫链来进行随机抽样的方法。它主要用于从复杂概率分布中抽取样本,尤其是在高维空间中十分有效。MCMC算法广泛应用于统计学、物理学、生物信息学以及机器学习等领域。它能够有效地解决样本量小、模型复杂、计算量大的问题。
###
K-means和EMK-means是聚类算法中最简单的一种,但是里面包含的思想却是不一般。聚类属于无监督学习,朴素贝叶斯、SVM等都是有类别标签y的,即已经给出了样本的分类。而聚类的样本中却没有给定y,只有特征x。聚类的目的是找到每个样本x潜在的类别y,并将同类别y的样本x放在一起。
在聚类问题中,给定训练样本{xi}Ni=1,每个xi∈Rn,没有类别标签y。
K-means算法是将样本聚类成
目标2022/4/17-2022/5/10实现自适应的MCMC方法(Adaptive Metropolis Algorithm)本地目录:E:\Research\OptA\MCMC如有问题,欢迎交流探讨! 邮箱:lujiabo@hhu.edu.cn 卢家波 来信请说明博客标题及链接,谢谢。MCMC简介MCMC方法是基于贝叶斯理论框架,通过建立平衡分布为的马尔可夫链,并对其平衡分布进行采样,通过不断
转载
2023-12-21 11:12:31
501阅读
EM算法是一种迭代算法,分为E、M两步。他就是含有隐变量的概率模型参数的极大似然估计法,或极大后验概率估计法 (将求已知量P(Y|θ)转换为求隐变量P(Y|Z,θ)P(Z|θ)的过程)
E步:利用当前估计的参数值,求出在该参数下隐含变量的条件概率值(计算对数似然的期望值); M步:结合E
转载
2024-03-21 09:06:39
82阅读
EM算法及其应用(一)EM算法及其应用(二): K-means 与 高斯混合模型 EM算法是期望最大化 (Expectation Maximization) 算法的简称,用于含有隐变量的情况下,概率模型参数的极大似然估计或极大后验估计。EM算法是一种迭代算法,每次迭代由两步组成:E步,求期望 (expectation),即利用当前估计的参数值来计算对数似然函数的期望值;M步,求极大 (maximi
转载
2024-11-02 09:25:20
28阅读
EM是我最近想深入学习的算法,在Mitchell的书中也提到EM可以用于贝叶斯网络中。下面主要介绍EM的整个推导过程。1. Jensen不等式 回顾优化理论中的一些概念。设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数。
翻译
精选
2013-12-04 10:11:07
561阅读
点赞
看了很多文章,对这个概念总是理解的模模糊糊,今天把它摘抄并写出来,加深一下理解。EM算法,全称是Expectation maximization,期望最大化。摘抄了两位知乎大牛的解释—— 先来看看为什么需要EM算法以下是某知乎大牛的解释: 1 为什么需要EM算法? 我们遇到的大多数问题是这样的: A、已知一堆观测数据X B、和数据服从的统计模型然后利用数据来估计统计模型中的参数解决这个问题的思
转载
2024-04-24 15:41:05
142阅读
EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法。在之后的MT中的词对齐中也用到了。在Mitchell的书中也提到EM可以用于贝叶斯网络中。下面主要介绍EM的整个推导过程。1. Jensen不等式 回顾优化
转载
2024-05-07 21:49:32
62阅读
定的(),那么f...
转载
2014-09-18 17:01:00
249阅读
2评论
EM算法——期望极大值算法1. EM算法的简介及案例介绍2. EM算法的推导3. EM算法3.1 算法步骤:3.2 EM算法的收敛性4. EM算法应用——求解高斯混合模型(GMM)的参数4.1 高斯混合模型(Gaussian mixture model,GMM)4.2 EM算法估计高斯混合模型的参数5.EM算法的推广——广义期望极大算法(GEM) 本文内容主体是基于李航老师的《统计学习方法
转载
2024-08-12 20:28:10
51阅读
EM算法简述 EM算法是一种迭代算法,主要用于含有隐变量的概率模型参数的极大似然估计,或极大后验概率估计。EM算法的每次迭代由两步完成:E步,求期望M步,求极大。EM算法的引入如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法或贝叶斯估计法估计模型参数,但是当模型中含有隐变量时,就不能简单地使用这些估计方法。因此提出了EM算法。EM算法流程假定集合 由观测数据 和未观测数据 组
转载
2024-05-20 15:34:00
130阅读
EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法。在之后的MT中的词对齐中也用到了。在Mitchell的书中也提到EM可以用于贝叶斯网络中。
下面主要介绍EM的整个推导过程。
1. Jensen不等式
回顾优化理论中的一些概念。设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数。当x是向量时,如果
转载
2016-04-28 16:26:00
342阅读
2评论
我们不仅要看专业书,还要多看看别人的经验,专业书虽然专业,但是很多时候对于入门的小白很不友好,我们也是学得一头雾水,好像是学会了,但又好像什么都没明白,仅仅记住它的公式,做了一两道例题,还是需要参考别人的经验理解的更快。很感谢那些有想法的,也愿意用自己的语言帮助入门的小白更快理解的大神们,因为看到了很多半吊子学习的人,所以更加觉得大神的难得。本文我们将解决这些疑惑:EM算法到底是个什么玩意?它能做
一、直接采样直接采样的思想是,通过对均匀分布采样,实现对任意分布的采样。因为均匀分布采样好猜,我们想要的分布采样不好采,那就采取一定的策略通过简单采取求复杂采样。 假设y服从某项分布p(y),其累积分布函数CDF为h(y),有样本z~Uniform(0,1),我们令 z = h(y),即 y = h(z)^(-1),结果y即为对分布p(y)的采样。直接采样的核心思想在与CDF以及逆变换的应用。在原
Kingma et al和Rezende et al在2013年提出了变分自动编码器(Variati
原创
2022-06-29 20:25:32
114阅读