组合预测 | MATLAB实现EMD-KPCA-GRU、EMD-GRU、GRU多变量时间序列预测对比
原创
2024-03-12 10:51:39
134阅读
EMD-GRU预测 | MATLAB实现基于EMD-GRU时间序列预测(EMD分解结合GRU门控循环单元)
原创
2024-10-08 14:10:47
122阅读
超酷!分解+熵值+降维+对比故障诊断!EEMD-MPE-KPCA-GRU、EEMD-MPE-GRU、EEMD-PE-GRU模型
问题引入熟悉PCA的都知道其是一个降维的算法,那么也知道KPCA是一个降维的算法,这个算法是基于核的,那么KPCA和PCA的区别是啥呢?问题解答应用PCA算法前提是假设存在一个线性超平面,进而投影。那如果数据不是线性的呢?该怎么办?这时候就需要KPCA,数据集从n维映射到线性可分的高维,然后再从n维降维到一个低维度。PCA所做的是对坐标轴线性变换,即变换后的新基还是一条直线。而KPCA对坐标轴做了
原创
2021-01-29 19:51:29
1465阅读
EM算法:期望最大化算法MLE(极大似然估计法)是一种非常有效的参数估计方法,但在概率模型中,有时既含有观测变量 (observable variable), 又含有隐变量(hidden variable)或潜在变量(latent variable),例如:分布中有多余参数或数据为截尾或缺失时,这个时候使用MLE求解是比较困难的。于是Dempster等人于1977年提出了EM算法,其出发点是把求M
转载
2024-04-19 08:37:14
114阅读
点云分析中的EMD(Earth Mover’s Distance)距离EMD(Earth Mover’s Distance)距离介绍EMD距离,又叫做推土机距离,也叫作Wasserstein距离。个人理解,EMD距离是离散化的Wasserstein距离,而Wasserstein距离是描述两个连续随机变量的EMD距离。二者数学思想是相同的,但是所描述的对象和应用场景稍有区分。由于个人正在做关于点云数
转载
2024-04-30 17:38:02
307阅读
库卡(KUKA)机器人入门学习必备知识1、库卡机器人零点标定使用的工具通常有两种:1)千分表,标定精度偏低。2)EMD电子装置,标定精度较高。2、库卡机器人停机模式有三种。分别是:STOP0,STOP1,STOP2这三种模式,停止的过程也不同。3、库卡机器人控制柜有基本的有5种型号。分别是:紧凑型( Compact )、小型( Smallsize-2 )、标准型( Standard )、中型( M
转载
2024-04-18 14:08:10
133阅读
重头戏来了。在以往的应用经验里,VMD方法在众多模态分解方法中可以说是非常好的。从催更力度上看,这个方法也是格外受关注。笔者决定加快进度快一些写完这个方法,十月份了有些同学要开始做毕设,希望这篇文能帮上忙。1. VMD(变分模态分解)的概念VMD(Variational Mode Decomposition)即变分模态分解,与2014年由Dragomiretskiy[1]等人提出,虽然它也叫模态分
转载
2024-05-07 21:26:01
904阅读
EMD-KPCA-Transformer多变量回归预测!分解+降维+预测!多重创新!直接写核心!
统计学习基础回顾 1. 后验概率 2 2. . 极大似然法 (MLE) 信息论基础 1. (互)信息 2. 熵、条件熵 3. 交叉熵、相对熵 最大熵模型 1 1 . 凸优化理论推导 Maxent 2. 与 MLE 的关系 EM 算法 1 1 . GMM 实例 2. MLE 推导我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为
转载
2024-05-13 13:38:25
42阅读
呆瓜在论文里使用了EMD方法,对于EMD方法,呆瓜刚开始接触时是懵逼的,完全不知道用来干什么。在请教了导师和夫哥后呆瓜也进行了自学,现在呆瓜对EMD有了初步的了解,也算是在论文之路上又前进了一步。在本文最后,呆瓜对上证闭盘数据进行了EMD分解,但只是做了分解图,并未作出解读和分析。本文结构大致如下图:首先,信号处理是现代科学的一个重要研究领域,遍及通信、数据分析、模式识别、金融等几乎所有的应用领域
转载
2024-03-29 20:03:09
388阅读
LAMMPS学习总结11、手册中说,Compute temp/region与执行温度调节的fix(fix nve/fix langevin等)命令一起使用,那么这个偏差将从每个原子中减去,剩余的热速度的温度调节将被执行,并且偏差将被添加回去。这是什么意思????2、NEMD计算热导率的langvin控温法中,为什么两次langevin控温呢?而且第一次的fix 没有unfix就直接又fix了 这
转载
2024-04-25 18:07:33
312阅读
grpc(java实现)可以看看中文官方文档或者官方文档grpc是什么,官方文档告诉你,我来告诉你怎么使用Java实现!maven依赖<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.
转载
2023-10-10 08:33:21
79阅读
2014年提出的 GRU,Gate Recurrent Unit,门控循环单元,是循环神经网络RNN的一种。GRU也是为了解决长期记忆和反向传播中的梯度等问题。我们知道Vanilla RNN 当时间步数较⼤或者时间步较小时,RNN的梯度较容易出现衰减或爆炸。虽然裁剪梯度可以应对梯度爆炸,但⽆法解决梯度衰减的问题。通常由于这个原因,循环神经⽹络在实际中较难捕捉时间序列中时间步距离较⼤的依赖
转载
2023-10-25 15:33:27
202阅读
EM算法在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算:第一步是计算期望(E),利用概率模型参数的现有估计值,计算隐藏变量的期望;
转载
2023-12-01 12:46:01
79阅读
文章目录1、简单介绍2、基本条件3、方法步骤3.1求平均包络线3.2 通过IMF判断求最终4、去噪应用 1、简单介绍经验模态分解( empirical mode decomposition,EMD)是由美国国家宇航局的华裔科学家Norden e. Huang博士于1998年提出的一种新的处理非平稳信号的方法——希尔伯特——黄变化的重要组成部分。基于EMD的时频分析方法既适合于非线性、非平稳信号的
转载
2024-04-18 10:31:31
183阅读
分解+降维+预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测
原创
2024-07-09 11:24:53
127阅读
一.场景介绍 最近在研究一个场景:图片质量评分,给一张图片一个预测的分数。 里面提到了用 EMD(Earth Mover’s Distance)算法来评估两张图片之间的分布距离。下面主要讲解下EMD算法的原理。 二.EMD算法 1.起源 EMD最早由Yossi Rubner????在2000年用在图像检
原创
2021-09-05 14:32:28
2247阅读
本文是来自中生代技术交流群的分享,本文中京东高级研发工程师刘锟洋将与大家分享构建高效的EDM平台的经验。1.EDM EDM 是 EmailDirect Marketing 的缩写,即邮件营销。是利用电子邮件(Email)与受众客户进行商业交流的一种直销方式,邮件营销对于企业的价值主要体现在三个方面:开拓新客户、维护老客户,以及品牌建设。 在互联网领域,大部分企业都有类似业务,国内的比如:京东,
K近邻算法K近邻算法优点就是算法简单,很容易理解,也很方便。缺点就是计算量大,每次输入一个向量x,把它归类时总要计算一遍离所有点的距离,并且排序。这十分麻烦,对于高维的数据以及样本量较大的数据。其计算量是十分大的,因此不建议使用。还有一个缺点就是,输入一个n1的向量X,结果需要计算其距离,变成了一个nn的矩阵,因此是数据变大,对存储而言也是一种压力。决策树 决策树是一种有监督学习的方式,回归树输出