本文主要根据作者的理解整理而来,有什么错误之处,请大家共同讨论指出。 1、图像滤波        在三维计算机视觉领域,通常对于二维图像的特征抽取是很关键的第一步,这主要包括抽取二维图像上的边缘、角点、纹理等。通常从这些被称为基元的组成部分中,我们可以提取图像的以下特征:        1)不同物体边
转载 2024-04-28 21:19:55
31阅读
发展到现在这个平滑算法的时候, 我已经完全不知道如何去命名这篇文章了, 只好罗列出一些关键字来方便搜索了.在之前我们提到过了均值滤波器, 就是说某像素的颜色, 由以其为中心的九宫格的像素平均值来决定. 在这个基础上又发展成了带权的平均滤波器, 这里的高斯平滑或者说滤波器就是这样一种带权的平均滤波器. 那么这些权重如何分布呢? 我们先来看几个经典的模板例子:尝试了使用这些滤波器对我们原来的进行操作
1、图像滤波  在三维计算机视觉领域,通常对于二维图像的特征抽取是很关键的第一步,这主要包括抽取二维图像上的边缘、角点、纹理等。通常从这些被称为基元的组成部分中,我们可以提取图像的以下特征:         1)不同物体边缘成像所带来的灰度跃变;         2)物体不同材料或者
# -*-coding:utf-8-*-# #TODO.1.均值滤波import cv2def image_blur(image_path1:str):
要求生成一个(2N+1)×(2N+1)大小的高斯模板H(标准为sigma),然后用此模板对图像进行滤波。不允许使用 fspecial 来产生高斯模板,不允许使用 imfilter、conv2 等函数。原理及算法理解:高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波的具体操作是:用一个模板(
Gauss滤波快速实现方法(转)  二维高斯函数具有旋转对称性,处理后不会对哪一个方向上的边缘进行了过多的滤波,因此相对其他滤波器,具有无法比拟的优越性。但是传统Gauss滤波随着图像尺寸的增加,运算复杂度呈平方上涨,因此需要对其优化改进。下面,分别介绍传统型,分解型和递归迭代型三种实现方法。  1 传统型  Gauss滤波首先需要构建一个Gauss滤波核,公式为:Matlab实现代码:dSigm
通过拜读前辈们关于高斯滤波快速算法的相关文献,实现了自己的快速高斯滤波算法,并用NEON指令加速了将近6倍左右。       高斯滤波是很多图像处理算法中最关键性的一个中间步骤,实现快速高斯滤波算法具有很重要的意义。      通过拜读前辈们关于高斯滤波快速算法的相关文献,实现了自己的快速高斯
转载 2024-05-18 07:30:35
283阅读
1.高斯函数1. 一维高斯函数对于任意的实数a,b,c,是以著名数学家Carl Friedrich Gauss的名字命名的。高斯的一维是特征对称“bell curve”形状,a是曲线尖峰的高度,b是
原创 2022-05-26 01:12:19
1139阅读
高斯滤波图像滤波高斯滤波(Gauss filter)概述:高斯滤波高斯滤波在图像处理概念下,将图像频域处理和时域处理相联系,作为低通滤波器使用,可以将低频能量(比如噪声)滤去,起到图像平滑作用。高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处
转载 2023-02-06 17:46:35
703阅读
要搞清楚高斯核的原理的话,把下面这篇博文认认真真看一遍就可以了,链接如下:下面是我认为值得注意和需要补充说明的几点:1 为什么高斯滤波能够让图像实现模糊化? 答:高斯滤波本质是低通滤通(有兴趣的同学可以查阅高斯滤波器的频率响应函数),即让信号(数据集)的低频部分通过,高频部分滤除。图像的细节其实主要体现在高频部分,所以经过高斯滤波,图像看起来就变模糊了。2 为什么很多文章中说生成高斯核时,我们通常
高斯滤波法,利用高斯函数计算高斯核,利用高斯核处理图像。高斯函数在滤除高斯噪音以及模糊方面效果较好,实现该函数的核心在于高斯核的计算。高斯函数的一维形式如公式(1)所示:                                &nb
高斯滤波图像滤波高斯滤波(Gauss filter)概述:高斯滤波高斯滤波在图像处理概念下,将图像频域处理和时域处理相联系,作为低通滤波器使用,可以将低频能量(比如噪声)滤去,起到图像平滑作用。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板
转载 2024-06-13 10:03:17
102阅读
原理:当前像素值,是由周围像素值决定。通过模板内的值与图像卷积,模板内的值可以直接给定,值有下降的过程即可,也可以通过二维高斯函数生成,这里是通过二维高斯函数生成。效果如下: 二维高斯函数,定义一个和原图一样大小的高斯函数图像,sigmma取1,其中(x0, y0)是图像的中心:这个截取的模板大小为5x5,以(x0, y0)为中心截取:1. Matlab代码实现:% 高斯平滑,高斯滤波
转载 2024-01-02 13:40:07
70阅读
二维高斯函数具有旋转对称性,处理后不会对哪一个方向上的边缘进行了过多的滤波,因此相对其他滤波器,具有无法比拟的优越性。但是传统Gauss滤波随着图像尺寸的增加,运算复杂度呈平方上涨,因此需要对其优化改进。下面,分别介绍传统型,分解型和递归迭代型三种实现方法。1 传统型Gauss滤波首先需要构建一个Gauss滤波核,公式为:Matlab实现代码:dSigma =0.8; fK1=1.0/(2*dSi
 第一个问题:高斯函数为什么能作为图像处理中的滤波函数?高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是:(1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对
转载 2023-11-24 23:16:47
78阅读
高斯滤波(一)简单介绍下刚刚看的高斯滤波。一 在学习高斯滤波前要先了解相关数学背景-----一维高斯分布、二维高斯分布。 二维正态分布在高斯滤波中用二维正态分布,并且其中心值取(0,0) 结合紧密程度的参数p取0。如图。二 首先,高斯滤波主要是一种线性(对原有图像上进行线性运算)平滑(取平均值)滤波高斯滤波主要是为了消除噪声,提取特征,对高斯噪声有较好的效果。 高斯噪声: 就是它的概率密度函数服
目录一、设计思路二、主要代码三、运行结果 一、设计思路新建CZQLImgPro类## 标题私有数据成员:高斯滤波器的大小(nwindowsize),高斯滤波器方差(sigma),高斯滤波器(Mat Gauss),二值化阈值(binaryT)。私有成员函数:生成高斯滤波器函数。共有成员函数:设置高斯滤波参数;设置二值化阈值函数;阈值分割函数;高斯滤波函数。重载两个构造函数:初始化高斯滤波参数;初始
本文详细介绍高斯滤波和双边滤波的原理并给出MATLAB实现,最后对照高斯滤波与双边滤波的效果。目录一、滤波原理1.1 一维高斯分布1.2 二维高斯分布1.3 高斯滤波总结 二、双边滤波1. 双边滤波的原理 2. 双边滤波是如何实现“保边去噪”的?3. MATLAB实现双边滤波 4. 关于sigma值的选取4.1 空间域sigma  选取4.2 值域
高斯滤波及其原理一、高斯函数的基础1.1 期望、方差与标准差用来刻画随机变量某一方面特征的常数被称为随机变量的数字特征,其常用的有:数学期望: 在概率论和统计学中,数学期望(mean)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。 需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均
转载 2024-05-24 12:44:47
201阅读
高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。一般的模板为3×3或5×5大小,其权值分布如下图: 
  • 1
  • 2
  • 3
  • 4
  • 5