GridAdaptedFeatureDetector简述
博客有两周没有进行更新,最近换了工作新环境需要适应工作会比较忙。端午三天假期,第一天约见之前的朋友聊了一下。希望自己写博客计划能够一直坚持下去,ok话不多说。今天上午打开电脑,该学习一下OpenCV源码中的知识点。主要学习了OpenCV函数源码中FeatureDetector中里面有一个G
转载
2024-04-05 00:03:56
301阅读
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言一、角点是什么?二、Harris角点检测算法:cornerHarris()三、Shi-Tomasi角点检测算法:goodFeaturesToTrack()四、亚像素级角点检测:cornerSubPix()总结 前言笔者本科时候有幸接触了OpenCV3.2.0版本的学习,后因考研压力不得不暂时停下学习的脚步,现在考研任务结
转载
2024-04-19 14:11:05
64阅读
点云网格化:一个个稀疏的点变成稠密的网格。 1)首先进行点云滤波,有以下几种原因: (1) 点云数据密度不规则需要平滑 (2) 因为遮挡等问题造成离群点需要去除 (3) 大量数据需要下采样 (4) 噪声数据需要去除 经过滤波处理,物体轮廓能变的更为清晰。 2)点云下采样 若点云数太多,进行许多张图融合的时候计算量太大,因此对海量的点云在处理前进行数据压缩。可以对输入的点云数据创建一个三维体素栅格,
转载
2024-01-02 14:24:27
186阅读
因为pcl的点云模板匹配遇到了各种困难,暂时先用opencv的模板匹配函数做一个简单的焊缝识别,看看效果。此方法的缺陷就在于物体和相机位置必须固定,只允许微小位移,否则数据将失效。1什么是模板匹配? 模板匹配是一种用于查找与模板图像(补丁)匹配(类似)的图像区域的技术。 虽然补丁必须是一个矩形,可能并不是所有的矩形都是相关的。在这种情况下,可以使用掩模来隔离应该用于找到匹配的补丁部分。它是如何工作
博主最近在做三维重建,之前就了解过pcl库,俗话说,二维处理靠opencv,三维处理靠pcl,那么这个点云库到底有什么神奇功能呢?博主才疏学浅,现在就学了如何将三维点显示和一些简单的滤波,在这里,对自己,也是对广大初学者都可以做个复习和简单的介绍。首先如何将已有的三维点显示,博主这里是利用深度相机直接测得的深度,帧之间通过icp获得世界坐标系下的空间位姿,在这里,我们简单来看从深度照片中提取点云。
转载
2024-03-31 08:50:02
202阅读
Kinect实现图像的采集和点云配准使用opencv对Kinect2相机采集的深度图像和彩色图像实现配准opencv的数据结构实现采集和映射的代码 使用opencv对Kinect2相机采集的深度图像和彩色图像实现配准使用opencv对Kinect2采集的深度图像和彩色图像进行配准结果进行显示。opencv的数据结构在进行kinect2相机实现点云的配准过程中,使用opencv创建了Mat类型的数
转载
2024-03-11 06:29:02
66阅读
「本文介绍了在Linux系统下由双目视觉图像获得三维点云的案例,程序每一行都有注释讲解」(关于SLAM更基础的介绍打算放到本系列的前两篇文章,后面再补吧)Pangolin是Linux系统中基于 OpenGL的3D绘图库,OpenCV是应用广泛的开源计算机视觉库。本文中涉及一些使用中的常见指令。本案例实现思路如下:根据双目视觉的左右眼图像(灰度图): 通过调用
转载
2024-03-12 08:17:39
265阅读
一、关于环境二、关于代码本文所给出代码仅为参考,禁止转载和引用,仅供个人学习。 本文所给出的例子是中的obj_000001.ply。实际应用中,很少能遇到使用meshlab的点云配准,但对于一些三维重建、位姿估计等应用场景,ICP是必不可少的函数。第一段代码的目的是旋转、平移物体以模拟两个不对齐的物体模型。# pymeshlab需要导入,其一般被命名为ml
import py
转载
2024-09-12 07:21:20
847阅读
opencv 特征点提取、匹配(一)opencv中特征点提取和匹配步骤: 提取特征点 生成特征点的描述子 特征点匹配opencv对应类: 图像特征点的提取 — FeatureDetector 特征点描述子生成 – DescriptorExtractor 特征点的匹配 – DescriptorMatcher (可从这三个基类派生出了不同的类来实现不同的特征提取算法、描述及匹配)特征提取
转载
2023-10-10 11:21:26
142阅读
Code Hello-SLAM标签(空格分隔): 旭 SLAM Program1.目标写一个RGB-D SLAM程序 要用的库:OpenCV, PCL, g2o 系统环境:Ubuntu16.042.安装软件2.1.OpenCV参见笔记:Vins-Mono环境配置与测试2.2.PCL安装PCL:sudo apt-get install libpcl-dev pcl-tools3.构建CMAKE程序新
转载
2024-04-30 10:15:24
177阅读
点云的配准一般分为等价集合和律属集合两种配准,其中等价集合配准叫做匹配过程,律属集合配准被称为Alignment。 ICP:Iterative Closest Point迭代最近点),即两个点云纯粹通过刚体位姿变换即可大致重合,参考三维点集拟合:平面拟合、RANSAC、ICP算法。 &n
转载
2024-06-01 15:21:53
91阅读
前言本来想边学PCL边记录的,但是由于硕士毕业临近,没有心思去慢慢的做记录,今天终于把论文肝完了,现在有了时间就继续把学习记录补上吧。 其实能处理点云的库非常多,网上一搜一大把,把我自己常用的几个给大家介绍下吧。一、PCL点云加载与可视化1.1 PCL点云加载常见的点云文件有两种格式: PCD和PLY,PCL很好的支持了加载这两种格式。PCD加载#include<iostream>
#
转载
2024-03-11 21:11:27
186阅读
PointNet1 是斯坦福大学研究人员提出的一个点云处理网络,与先前工作的不同在于这一网络可以直接输入无序点云进行处理,而无序将数据处理成规则的3Dvoxel形式进行处理。输入点云顺序对于网络的输出结果没有影响,同时也可以处理旋转平移后的点云数据。 点云是一种重要的几何数据形式。卷积网络通常需要规则的数据形式作为输入,但由于点云是非规则数据类型所以通常的做法大都先对点云进行规则化的处理,将空间划
最近在学习使用opencv进行图像处理,收获颇丰的同时也踩了不少坑。简单记录一下自己的学习过程,以便日后随时复习以及与广大感兴趣的网友随时交流,欢迎大家随时交流,本人会尽量答复。 由于是第一次编写博客,多有不足之出请见谅。 闲话不多说,进入今天的正题:opencv 中几种特征点提取与匹配算法的比较 opencv 是大型的图像处理库,上面集成了绝大多数关于图像处理的算法。 1.ubuntu16.04
转载
2024-03-17 15:36:11
53阅读
目录:前言1.点云裁剪2.点云边界框3.凸包4.DBSCAN 聚类5.平面分割隐藏点移除 前言接着上一节点云1 本节数据地址:链接:https://pan.baidu.com/s/1O4s8tFOvExhuKMl2OCv4Kg 提取码:82u11.点云裁剪先上代码import open3d as o3d
pcd=o3d.io.read_point_cloud("./test_data/Crop
转载
2024-06-07 13:57:32
58阅读
问题: 1.after running catkin_make to build the pcl package this error always comes.Could not find a package configuration file provided by "pcl_conversions" with any of the following names: pcl_conversi
转载
2024-06-07 21:17:58
63阅读
一、Opencv和PCL下面是opencv和pcl的特点、区别和联系的详细对比表格。特点/区别/联系OpenCVPCL英文全称Open Source Computer Vision LibraryPoint Cloud Library语言C++、Python、JavaC++功能图像处理(图像处理和分析、特征提取和描述、图像识别和分类、目标检测和跟踪等)、计算机视觉点云处理(点云处理和分割、三维重建
转载
2024-03-15 14:17:17
223阅读
点云处理1. 基本概念1.1 Roll(翻滚)、Yaw(偏航)、Pitch(俯仰)1.2 点云格式 (Point Cloud Format)1.2.1 PLY (多边形集合)1.2.2 PCD (Point Cloud Data)2. RANSAC2.1 简介2.2 应用2.2.1 直线拟合3. [ICP](https://ieeexplore.ieee.org/document/121791)
转载
2024-05-09 22:31:12
530阅读
点云模板匹配是一种在点云数据中寻找特定形状或模式的方法。它通常用于计算机视觉和三维图像处理中,可以应用于物体识别、姿态估计、场景分析等任务。点云模板匹配的基本思想是将一个称为模板的小点云形状与输入的大点云进行匹配,以找到最佳的对应关系。通常,模板是由已知的目标对象或感兴趣的形状提取得到的。以下是一般的点
一、前言在上一篇博客ORB-SLAM2 在线构建稠密点云(室内RGBD篇)中介绍了如何通过深度相机和ORB_SLAM2实现稠密点云建图,并转换为octomap在ROS中显示,那么这篇文章将使用双目相机实现室外的稠密点云构建。与深度相机不同,双目相机并不直接提供深度数据来计算点云,因此需要使用双目视差来计算深度数据。安装过程(和室内RGBD一样的代码)1、首先需要安装PCL点云库,可以参考博客《Ub