数据挖掘和机器学习近年来被大多数人所听说,这两个词近年来因为大数据的听上去高大上的词汇,其实在我们的生活中到处存在,往往是计算机知识中融入了数学(统计方面的知识)。数据挖掘往往和机器学习一起出现在各种地方,要用到数据挖掘的地方必有机器学习,在数据量小的时候,他们可能不会有依赖关系,往往通过人工的处理,就会在小范围的数据量中找到有价值的信息,并做出判断或者预测,但是在现在的社会,大数据时代,每天产生
转载
2024-05-21 18:06:14
14阅读
文章目录常见的特征工程1、异常处理2、缺失值处理3、特征构造4、数据分桶5、数值型特征归一化/标准化6、类别特征encode7、特征筛选7.1 Filter方法(过滤式)7.2 Wrapper方法(封装式)7.3 Embedded方法(嵌入式)总结 数据和特征决定了机器学习的上限,而模型和算法只是在尽力逼近这个上限,因此特征工程是机器学习成功的关键。文章背景来自天池实验室的数据挖掘比赛 零基础
数据挖掘技术可分为描述型数据挖掘和预测型数据挖掘两种。描述型数据挖掘包括数据总结、聚类及关联分析等。预测型数据挖掘包括分类、回归及时间序列分析等。
1、数据总结:继承于数据分析中的统计分析。数据总结目的是对数据进行浓缩,给出它的紧凑描述。传统统计方法如求和值、平均值、方差值等都是有效方法。另外还可以用直方图、饼状图等图形方式表示这些值。广义上讲,多维
转载
2023-09-18 15:53:10
29阅读
利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等, 它们分别从不同的角度对数据进行挖掘。 ① 分类。分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到某个给定的类别。(分类算法一般有:决策树、bayes分类、神经网络、支持向量机
转载
2023-09-25 21:39:42
115阅读
数据挖掘的概念首先来看一下什么是数据挖掘?数据挖掘(Data mining)是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘旨在利用机器学习等智能数据分析技术,发掘数据对象蕴含的知识与规律,为任务决策提供有效支撑。数据挖掘是建立新一代人工智能关键共性技术体系的基础支撑。在大数据时代背景下,数据挖掘技术已广泛应用于金融、医疗、教育、交通、媒体等领域。然而,随着人工智能、移动互联网、云计算
转载
2023-08-06 12:03:34
169阅读
社会的发展进入了网络信息时代,各种形式的数据海量产生,在这些数据的背后隐藏着许多重要的信息,如何从这些数据中找出某种规律,发现有用信息,越来越受到关注。为了适应信息处理新需求和社会发展各方面的迫切需要而发展起来一种新的信息分析技术,这种技术称为数据挖掘。数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道
转载
2023-10-09 22:06:10
16阅读
1.Chapter1 引论:(1) OLTP 和 OLAP 概念:OLTP(on-line transaction processing) 联机事物处理,就是我们常常说的关系数据库的主要应用,主要是主要的、日常的事务处理,比如银行交易。比如:mysqlOLAP(on-line analytical ...
转载
2015-02-09 17:49:00
146阅读
2评论
1. 引言
数据挖掘(data mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。随着信息技术的高速发展,人们积累的数据量急剧增长,动辄以tb计,如何从海量的数据中提取有用的知识成为当务之急。数据挖掘就是为顺应这种需要应运而生发展起来的数据处理技术。是知识发现(knowledge discovery
转载
2009-04-14 23:45:34
851阅读
理论绪论数据挖掘 (数据中的知识发现,KDD):发现隐藏在大型数据集中的模式(有趣的模式,即知识)数据挖掘步骤(有时还包括数据归约:得到原始数据的较小表示,而不牺牲完整性)数据库(管理)系统:数据(库)+软件程序数据仓库:从多个数据源收集的信息存储库,存放在一致的模式下,并通常驻留在单个站点。/从结构角度看,有三种数据仓库模型:企业仓库、数据集市和虚拟仓库。/数据仓库通常采用三层体系结构:底层是数
转载
2023-07-12 23:03:56
136阅读
在大数据的相关岗位当中,大数据挖掘在这两年可以说是得到了极大的重视,数据挖掘岗位的薪资也可以说是高出同等级其他岗位不少,很多人因此将大数据挖掘作为一个转行的选择。今天我们从大数据挖掘应用培训的角度,来分享一下大数据挖掘原理及技术解析。大数据挖掘,需要大数据技术框架的支持,早期的Hadoop MapReduce框架,是解决大数据挖掘问题的第一代框架,而随着数据处理需求的变化,紧随其后又出现了很多的
转载
2023-07-19 14:23:54
218阅读
1.1 什么是数据挖掘从大量数据中挖掘出隐含的、未知的、对决策有潜在价值的关系、模式和趋势,并用这些知识和规则建立用于决策支持的模型,提供预测性决策支持的方法、工具和过程,这就是数据挖掘。是统计学、数据库技术、人工智能技术的结合。1.2 数据挖掘的基本任务利用分类与预测、聚类分析、关联规则、时序模式、偏差检测、智能推荐等方法,帮助企业提取数据中蕴含的商业价值,提高企业的竞争力。1.3 数据挖
转载
2023-12-08 07:44:45
62阅读
[toc] 《数据挖掘中的数据挖掘技术:数据挖掘中的数据挖掘技术未来研究》 一、引言 数据挖掘是人工智能领域的一个重要分支,其目的是从海量的数据中发现潜在的模式和规律,进而为企业和社会提供有价值的信息和洞察。数据挖掘技术是实现数据挖掘的关键手段,其涉及的概念和技术种类非常丰富。本文旨在探讨数据挖掘中
原创
2023-07-01 07:01:32
194阅读
如果我们学习数据分析,那么肯定少不了也要好好学习一下数据挖掘。我们都知道,要想掌握好数据挖掘就需要掌握很多的相关技术。一般来说,数据挖掘工作的技术有关联规则、分类、聚类、决策树、序列模式,下面我们就给大家讲述一下这些知识。1.关联规则首先我们给大家讲述一下关联规则,一般来说,关联规则使两个或多个项之间的关联以确定它们之间的模式。关联通常用于销售点系统,以确定产品之间的共同趋势。
转载
2023-09-04 14:20:37
62阅读
一篇文章让你知道什么是大数据挖掘技术什么是大数据挖掘?数据挖掘(Data Mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘对象根据信息存储格式,用于挖掘的对象有关系数据库、面向对象数据库、数据仓库、文本数据源、多媒体数据库、空间数据库、时态数据库、异质数据库以及Internet等。数据挖掘流程定义问题:
转载
2023-09-10 15:16:01
91阅读
在上一篇文章中我们给大家介绍了很多在金融行业中数据挖掘的案例,有关数据挖掘的案例实在是有很多。随着金融大数据特征在大数据时代的日益明显,监管上和业务上的需求也越来越复杂,无论是对科研界还是实业界都提出了新的要求和挑战。下面我们就给大家介绍一下更多的相关内容。首先就是客户评分,评分技术是银行业广泛使用的一项技术,包括风险评分、行为评分、收益率评分、征信局评分以及客户评分等。评分技术
转载
2023-08-08 11:18:21
165阅读
在当今信息爆炸的时代,伴随着社会事件和自然活动的大量产生(数据的海量增长),人类正面临着“被信息所淹没,但却饥渴于知识”的困境。随着计算机软硬件技术的快速发展、企业信息化水平的不断提高和数据库技术的日臻完善,人类积累的数据量正以指数方式增长 。面对海量的、杂乱无序的数据,人们迫切需要一种将传统的数据分析方法与处理海量数据的复杂算法有机结合的技术。数据挖掘技术就是在这样的背景下产生的。它可以从
转载
2024-01-11 13:55:59
46阅读
数据挖掘的9大成熟技术和应用基于数据挖掘的9大主要成熟技术以及在数据化运营中的主要应用: 1、决策树 2、神经网络 3、回归 4、关联规则 5、聚类 6、贝叶斯分类 7、支持向量机 8、主成分分析 9、假设检验1 决策树决策树(Decision Tree)是一种非常成熟的、普遍采用的数据挖掘技术。之所以称为树,是因为其建模过程类似一棵树的成长过程,即从根部开始,到树干,到分枝,再到细枝末节的分叉,
转载
2023-10-22 08:21:08
87阅读
在 01 课时,我简单地介绍了数据挖掘是什么、能做什么,以及怎么做。本课时,我将带你了解数据挖掘需要用到的编程语言——Python,包括其数据结构和基本语法。如果你对 Python有一定了解,那么可以直接跳过这部分内容。Python 的介绍Python 是一门面向对象、直译式编程语言, 编写简单、上手迅速,开源扩展包十分丰富,所以在数据挖掘的前沿科研和工业领域都广受欢迎,有着瑞士军刀般的价值。利用
转载
2023-09-16 13:16:25
96阅读
数据挖掘方面的资源、期刊、会议的网址集合
转载
2007-12-01 21:25:01
745阅读
1评论
我们在上一篇文章中给大家介绍了大数据的部分核心技术,分别是数据挖掘和机器学习。在大数据中,数据挖掘和机器学习都是发挥了不同的功能。在这篇文章中我们给大家介绍一下人工智能和其他大数据处理的基础技术,希望这篇文章能能够给大家带来帮助。首先说说人工智能,AI和大数据是相互促进的关系,一方面,AI基础理论技术的发展为大数据机器学习和数据挖掘提供了更丰富的模型和算法,如近几年的深度学习一系列技术和方法;另
转载
2023-12-07 09:02:50
54阅读