在讲新一代大数据技术架构前,先讲下大数据特征与大数据技术要解决的问题。1.大数据特征:“大量化(Volume)、多样化(Variety)、快速化(Velocity)、价值密度低(Value)”就是“大数据”显著的4V特征,或者说,只有具备这些特点的数据,才是大数据。2.大数据技术要解决的问题:大数据技术被设计用于在成本可承受的条件下,通过非常快速(velocity)地采集、发现和分析,从大量(vo
转载
2023-08-15 15:06:21
505阅读
大数据框架-Hadoop1.什么是大数据大数据是指由传统数据处理工具难以处理的规模极大、结构复杂或速度极快的数据集合。这些数据集合通常需要使用先进的计算和分析技术才能够处理和分析,因此大数据技术包括了大数据存储、大数据处理和大数据分析等方面的技术和工具。大数据的特点包括以下几个方面:规模大:数据集合通常包含数千亿、数万亿甚至更多的数据,远远超过传统数据处理工具的处理能力。结构复杂:数据集合通常包含
转载
2023-10-23 21:00:01
322阅读
# 简述大数据技术架构
大数据技术架构是支持大规模数据的存储、处理和分析的体系结构,它结合了多种技术与工具,以便更好地满足数据量大、数据类型多样以及数据处理速度快等需求。本文将简要介绍大数据技术架构的组成部分,并提供一些代码示例以帮助读者理解。
## 大数据技术架构的组成部分
大数据技术架构一般可以分为以下几个层次:
1. **数据源层**
包括各种数据产生的来源,如传感器数据、
原创
2024-10-17 11:16:04
739阅读
1、hadoop 工作原理: a.首先 概括里面的角色(HDFS 、Mapreduce) b.讲解各个角色的整体架构 HDFS: 概念: 分布式文件系统,用于海量数据存储。 架构:
转载
2024-09-04 05:47:34
23阅读
大数据技术架构是指为了应对大数据处理需求而设计的一种系统架构。它通常包含数据采集、数据存储、数据处理和数据分析等组件。本文将简要介绍大数据的技术架构,并提供一个代码示例来说明其中的一些关键概念。
## 1. 数据采集
大数据的第一步是从各种来源收集数据。这些数据可以来自传感器、日志文件、社交媒体等。在大数据技术架构中,常用的数据采集工具有Flume、Kafka等。下面是一个使用Flume进行数据
原创
2023-12-17 10:09:03
171阅读
数据处理分为三大类: 第一类是从业务的角度,细分为查询检索、数据挖掘、统计分析、深度分析,其中深度分析分为机器学习和神经网络。第二类是从技术的角度,细分为Batch、SQL、流式处理、machine learning、Deep learning。第三类是编程模型,细分为离线编程模型、内存编程模型、实时编程模型。结合前文讲述的数据源特点、分类、采集方式、存储选型、数据分析、数据处理,我在这
转载
2023-09-14 16:22:07
368阅读
在正式开始介绍大数据知识之前我们先来了解一下一些大数据常用名词,如果您是“过来人”的话,可以直(jia)接(shen)跳(yin)过(xiang);如果您是新手的话,可以带着对新鲜名词的好奇心再去阅读本文,相信可以达到事半功倍的效果首先,数据传输组件:①Kafka是用Scala编写的分布式消息处理平台。 ②Logstash是用JRuby编写的一种分布式日志收集框架。 ③Flume是用Java编写的
转载
2023-09-11 23:16:11
115阅读
作者 唐正阳 近日,中国人民银行成立金融科技(FinTech)委员会,旨在加强金融科技工作的研究规划和统筹协调。 随着AI、云计算在金融业务层面的快速渗透,也倒逼监管跟进升级,以进一步加强监管的有效性。事实上,这次央行提出监管科技(RegTech),也是对金融科技的肯定,希望其在驱动金融创新,引领金融规范化发展中发挥积极作用。 金融的核心在于风险,现下谈及互联网金融,
转载
2023-09-15 08:18:26
249阅读
大数据的应用开发过于偏向底层,具有学习难度大,涉及技术面广的问题,这制约了大数据的普及。现在需要一种技术,把大数据开发中一些通用的,重复使用的基础代码、算法封装为类库,降低大数据的学习门槛,降低开发难度,提高大数据项目的开发效率。大数据在工作中的应用有三种:与业务相关,比如用户画像、风险控制等;与决策相关,数据科学的领域,了解统计学、算法,这是数据科学家的范畴;与工程相关,如何实施、如何实现、解决
转载
2018-11-14 09:57:13
1556阅读
大数据技术结构层次包含哪些部分大数据领域每年都会涌现出大量新的技术,大数据技术可以挖掘出大规模数据中隐藏的信息和知识,为人类社会经济活动提供依据,提高各领域的运行效率,甚至提高整个社会经济的集约化程度,那么大数据技术结构层次包含哪些部分呢?下面就一起来了解一下。一、统一数据基础层:我们通过各种方式采集到的丰富数据,在清洗、结构化后进入统一的ODS数据基础层。其主要功能包括:1、同步:结构化数据增量
转载
2023-05-26 15:07:39
185阅读
1、流式架构传统大数据架构优点:简单,易懂,对于BI系统来说,基本思想没有发生变化,变化的仅仅是技术选型,用大数据架构替换掉BI的组件。缺点:对于大数据来说,没有BI下如此完备的Cube架构,虽然目前有kylin,但是kylin的局限性非常明显,远远没有BI下的Cube的灵活度和稳定度,因此对业务支撑的灵活度不够,所以对于存在大量报表,或者复杂的钻取的场景,需要太多的手工定制化,同时该架构依旧以批
转载
2023-06-14 14:31:17
303阅读
# Java大数据技术栈是什么
## 概述
在当今信息爆炸的时代,大数据技术成为了越来越重要的一部分。Java作为一种广泛应用的编程语言,在大数据领域也有着重要的地位。本文将介绍Java大数据技术栈的概念以及实现方法,帮助新手开发者快速入门。
## Java大数据技术栈流程
下表展示了实现Java大数据技术栈的整体流程:
| 步骤 | 操作 |
| ------ | ------ |
|
原创
2024-05-26 04:00:56
69阅读
大数据管理数据处理过程图大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察力。大数据处理的主要流程包括数据收集、数据存储、数据处理、数据应用等主要环节。随着业务的增长,大量和流程、规则相关的非结构化数据也爆发式增长。模板来源:https://www.iodraw.com/template/big-data
转载
2023-07-14 15:14:16
79阅读
我们先来看看这张图,这是某公司使用的大数据平台架构图,大部分公司应该都差不多:从这张大数据的整体架构图上看来,大数据的核心层应该是:数据采集层、数据存储与分析层、数据共享层、数据应用层,可能叫法有所不同,本质上的角色都大同小异。所以我下面就按这张架构图上的线索,慢慢来剖析一下,大数据的核心技术都包括什么。一、数据采集数据采集的任务就是把数据从各种数据源中采集和存储到数据存储上,期间有可能会做一些简
转载
2023-07-10 14:08:34
308阅读
公司现状:CDN公司(可以百度一下),边缘节点服务器会产生很多用户请求日志,要对日志进行各种分析和原始日志打包,最终分析结果进行收费、让客户可以获取请求日志各种分析结果、为客户进行原始日志按域名按天按小时分割打包。 先说满足这样的大数据实时计算需要的几个基本组件(一定要注意版本问题,java大数据机器间
转载
2024-07-08 11:55:43
21阅读
大数据离线分析架构是指一种系统架构,旨在对大规模数据集进行非实时的分析处理,支持企业在数据量庞大、结构复杂的情况下提取有价值的信息,帮助决策和优化业务流程。随着信息技术的迅速发展,数据的产生速度与日俱增,企业纷纷寻求高效的方式来处理这些数据,因此,大数据离线分析架构不断受到关注和应用。
## 背景描述
在当前的技术环境下,大数据的处理和分析成为了企业发展中至关重要的一环。根据市场研究,企业越来
随着科技的发展和社会的进步,大数据、人工智能等新兴技术开始进入了我们的生活。我们已经从信息时代跨入了大数据时代,而大数据是一个十分火热的技术,现如今大数据已经涉及到了各行各业的方方面面。但是目前而言,很多人对于大数据不是十分清楚,下面我们就给大家讲一讲大数据的架构知识。1.大数据架构的特点一般来说,大数据的架构是比较复杂的,大数据的应用开发过于偏向底层,具有学习难度大,涉及技术
转载
2023-07-11 20:48:06
155阅读
目录(一)通用框架概述(二)数据收集层(三)数据存储层(四)资源管理与服务协调层(五)计算引擎层(六)数据分析层(七)数据可视化层 (一)通用框架概述自底向上,与OSI类似,通用框架下的大数据体系有七层:数据源、数据收集层、数据存储层、资源管理与服务协调层、计算引擎层、数据分析层及数据可视化层。图示如下: (二)数据收集层 数据收集层直接与数据源对接,负责采集产品使用
转载
2023-08-15 22:30:12
167阅读
随着多年的大数据的技术发展和积累,越来越多的人发现各个公司所使用的大数据技术大致可以分为两大类,分别是离线处理技术和实时处理技术,要么个别公司只有离线处理技术,要么个别公司只有实时处理技术,但是绝大部分公司基本上都是两种技术架构都带着一起在做,以为我们的业务一、lamda架构基本介绍 1、业务系统基本流程介绍 2、lamda架构基本介绍 lamda架构最早是由storm的创始人,Nat
转载
2023-08-12 15:49:35
224阅读
大数据的应用开发过于偏向底层,具有学习难度大,涉及技术面广的问题,这制约了大数据的普及。现在需要一种技术,把大数据开发中一些通用的,重复使用的基础代码、算法封装为类库,降低大数据的学习门槛,降低开发难度,提高大数据项目的开发效率。大数据在工作中的应用有三种:与业务相关,比如用户画像、风险控制等;与决策相关,数据科学的领域,了解统计学、算法,这是数据科学家的范畴;与工程相关,如何实施、如何实现、解决
转载
2023-07-07 17:46:38
227阅读