随着DMKD研究逐步走向深入,数据挖掘和知识发现的研究已经形成了三根强大的技术支柱:数据库、人工智能和 数理统计。因此,KDD大会程序委员会曾经由这三个学科的权威人物同时来任主席。目前DMKD的主要研究内容包括基础理论、发现算法、数据仓库、可视化技 术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半结构化和非结构化数据中的知识发现以及网上数据挖掘等。 数据挖掘所发现的知识最常见的有以
转载
2023-12-12 16:16:44
68阅读
作者:朱赛凡一 数据分析处理需求分类1 事务型处理在我们实际生活中,事务型数据处理需求非常常见,例如:淘宝网站交易系统、12306网站火车票交易系统、超市POS系统等都属于事务型数据处理系统。这类系统数据处理特点包括以下几点:一是事务处理型操作都是细粒度操作,每次事务处理涉及数据量都很小。二是计算相对简单,一般只有少数几步操作组成,比如修改某行的某列;三是事务型处理操作涉及数据的增、删、改、查,对
转载
2024-01-11 12:43:12
84阅读
作者:朱赛凡 三大数据背景下数据统计分析技术介绍随数据量变大,和事务处理不同的是,单个统计分析涉及数据量会非常大,单个统计分析任务涉及数据会分散在多台服务器上,且由于计算量大,采用单台服务器进行计算,会导致计算时间非常长,单个统计分析任务必须采用并行计算方式来加快单个统计分析任务执行速度。1并行查询与并行计算技术介绍在大数据背景下的数据统计分析技术门类很多,常见的有:n MP
转载
2023-10-10 11:41:24
132阅读
为助力疫情科学防控、保障复工复产安全有序,落实工作决策部署,各省均在结合疫情防控实际需要,积极利用新一代信息技术,建设相关平台,用于登记、核验个人基本信息和健康信息,支撑政府部门、用人单位、社区等综合判断个人健康风险等级,实现特殊时期动态健康认证,彻底改变了传统低效的“人肉”登记方式。由于此类信息平台承载数据直接影响省内抗疫、防疫工作的正常开展,因此保证该平台数据安全性和服务的连续性至关重要。在某
Flume是Cloudera提供的一个高可用的,高可靠的。分布式的海量日志採集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同一时候,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。
Flume有两个版本号,Flume 0.9X或CDH3及更早版本号的统称Flume-og,Flume-og由agent、collection、master等
转载
2016-03-01 10:04:00
182阅读
2评论
数据挖掘常用算法及其在医学大数据研究中的应用 医院信息化的发展及云计算、大数据、物联网、人工智能等在医疗领域的应用,为医学数据的获取、存储及处理提供了极大便利。数据挖掘也随着计算机技术得到了广泛应用,从而提高了数据利用效率,拓展了知识发现的广度与深度。目前,医院已积累了大量医疗相关数据。医学大数据与数据挖掘的结合,能够帮助人们从存储的大体量、高复杂的医学数据中提取有
转载
2023-05-30 09:06:14
146阅读
世界上所有关注开发技术的人都意识到“大数据”对企业商务所蕴含的潜在价值,其目的都在于解决在企业发展过程中各种业务数据增长所带来的痛苦,现实是,许多问题阻碍了大数据技术的发展和实际应用。因为一种成功的技术,需要一些衡量的标准。现在我们可以通过几个基本要素来衡量一下大数据技术,这就是——流处理、并行性、摘要索引和可视化。 大数据技术主要涵盖哪些内容,具体如下: 一、流处理
原创
2023-04-19 10:17:32
240阅读
大数据经过多年的发展,目前在概念上已经有了更多的含义,从不同的角度来看待大数据也会有不同的定义,但是总的来说,大数据可以用三个方面来进行概括,其一是“新的价值领域”;其二是“数据价值化”;其三是“产业互联网的基础”。大数据之所以受到了广泛的关注,一个重要的原因就是大数据开辟了新的价值领域,这一点是非常关键的。新的价值领域就会打造一系列生态体系,而生态体系又会孕育出大量不同的商业模式,而这个过程也会
原创
2019-08-09 11:26:34
1681阅读
当前,电力企业改革发展面临新的形势和任务,随着电力体制改革的不断升入,尤其是受市场广泛关注的售电公司的出现,电力市场的交易将更加“民主、开放”,交易方式将逐步升级,出现电网+互联网+信用+期货+零售+批发等多种灵活、自主的交易方式,导致电力企业在开拓售电市场、防范经营风险等方面面临的压力与日俱增,同时面临着优质客户减少、市场份额下降及优质人才流失的严峻挑战,尤其对营销服务业务提出了更高的要求和新的
转载
2018-11-07 10:17:51
3801阅读
我们先来看看这张图,这是某公司使用的大数据平台架构图,大部分公司应该都差不多:从这张大数据的整体架构图上看来,大数据的核心层应该是:数据采集层、数据存储与分析层、数据共享层、数据应用层,可能叫法有所不同,本质上的角色都大同小异。所以我下面就按这张架构图上的线索,慢慢来剖析一下,大数据的核心技术都包括什么。一、数据采集数据采集的任务就是把数据从各种数据源中采集和存储到数据存储上,期间有可能会做一些简
转载
2023-07-10 14:08:34
308阅读
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
# 大数据分析技术:研究生课程概述
随着社会的不断发展,大数据在各个领域的重要性日益显著。大数据分析技术作为一种新兴的研究方向,已经成为研究生课程中的重要组成部分。那么,什么是大数据分析技术?它的主要方法和应用是什么?本文将带您深入探讨这一领域,并提供一些代码示例以帮助理解。
## 什么是大数据分析?
大数据分析是指从庞大和复杂的数据集中提取信息和洞察的过程。这些数据通常具有以下特征:
1.Hadoop Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。Hadoop实现了一个分布式文件系统( Distributed File System),其中一个组件是HDFS(Hadoop
转载
2023-09-01 09:15:42
74阅读
可视化就是数据、信息以及科学等等多个领域图示化技术的统称。随着计算机硬件的发展,人们创建更复杂规模更大的数字模型,发展了数据采集设备和数据保存设备。同理也需要更高级的计算机图形学技术及方法来创建这些规模庞大的数据集。随着数据可视化平台的拓展,应用领域的增加,表现形式的不断变化,以及增加了诸如实时动态效果、用户交互使用等,数据可视化像所有新兴概念一样边界不断扩大。 那么,为什么说大
转载
2023-10-10 22:34:39
131阅读
大数据技术在乡村画像中的应用研究李望月1,2,刘瑾1,2,陈娜1,21北京国研网信息股份有限公司,北京1000102国务院发展研究中心信息网,北京100010摘要:在国家大数据战略和乡村振兴战略的大背景下,创新性地将大数据技术引入乡村画像中。在系统研究乡村大数据源、大数据画像技术水平和乡村振兴研究的热点、重点和难点问题的基础上,从乡村发展基础、乡村发展状态和乡村发展行为3个方面构建了大数据乡村画像
原创
2021-04-07 11:57:08
346阅读
自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题。从语言识别,到语义识别,从而真正做到可以交互。业界普遍认为,自然语言处理是人工智能中最难的部分,也是决定AI是否“智能”的关键因素。
人工智能技术的发展,也可能会带来一些新挑战。
第一个挑战:隐私保护的挑战。
这起源于两方面:一方面,随着移动互联
转载
2023-05-30 09:06:51
110阅读
数据可视化现状调研概述数据可视(Data visualization)数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息。但是,这并不就意味着,数据可视化就一定因为要实现其功能用途而令人感到枯燥乏味,或者是为了看上去绚丽多彩而显得极端复杂。为了有效地传达思想概念,美学形式与功能需要齐头并进,通过直观地传达关键的方面与特征,从而实现对于相当稀疏而又复杂的数据集的深入洞察。然而,设计人员往往
转载
2023-03-02 15:22:51
310阅读
随着科技的发展和社会的进步,大数据、人工智能等新兴技术开始进入了我们的生活。我们已经从信息时代跨入了大数据时代,而大数据是一个十分火热的技术,现如今大数据已经涉及到了各行各业的方方面面。但是目前而言,很多人对于大数据不是十分清楚,下面我们就给大家讲一讲大数据的架构知识。1.大数据架构的特点一般来说,大数据的架构是比较复杂的,大数据的应用开发过于偏向底层,具有学习难度大,涉及技术
转载
2023-07-11 20:48:06
155阅读
大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。一、大数据采集技术数据采集是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数
转载
2024-04-10 13:43:16
42阅读
云计算与大数据密切相关,大数据是计算密集型操作的对象,需要消耗巨大的存储空间,云计算的主要目标是在集中管理下使用巨大的计算和存储资源,用微粒度计算能力提供大数据应用,云计算的发展为大数据的存储和处理提供了解决方案,大数据的出现也加速了云计算的发展,基于云计算的分布式存储技术可以有效地管理大数据,借助云计算的并行计算能力可以提高大数据采集和分析的效率。研究机构Gartner定义∶大数据是需要新的处理
转载
2023-10-23 14:41:33
0阅读