问题:1、用计算机解决一个现实中的问题步骤2、算法3、例子:4、总结我的回答:1、用计算机解决一个现实中的问题步骤问题分析:就是审题,明白讲什么数学模型建立:就是建立问题相关的数学模型,比如:函数算法的设计与选择:(算法设计是解决问题的核心)设计:就是求解特定类型的一系列步骤选择:因为解决问题的方法有很多(>1),所以选择最适合的算法的表示:就是有的算法很复杂,我们可以借助工具加深理解,比如
在这一部分中,我们将要介绍NLP领域的一个重要问题:语义分析。 语义分析分为两个部分:词汇级语义分析以及句子级语义分析。 这也就是为什么在词法分析和句法分析之后,我们要介绍的是语义分析而不是篇章分析的原因。【一】词汇级语义分析首先,我们来介绍词汇级语义分析。 词汇级语义分析的内容主要分为两块: 1.词义消歧 2.词语相似度 二者的字面意思都很好理解。其中,词义消歧是自然语言处理中的基本问题之一,
更新下一篇survey之前先来对NLP的一些任务进行总结一、词法分析分词 (Word Segmentation/Tokenization, WS):在对文本进行处理的时候,会对文本进行一个分词的处理。新词发现 (New Words Identification, NWI):这个好理解,因为网络上总是有新的词汇出现,比如以前的’神马’这类的网络流行词汇。形态分析 (Morphological Ana
一、知识总结      首先是语义分析。语义分析的任务是审查每一个语法结构的静态语义,即验证语法正确的结构是否有意义。几种常用的中间语言形式有:逆波兰表示法、图表示法、三元式、间接三元式、四元式。 波兰表示是一种既不须考虑优先关系、又不用括号的一种表示表达式的方法(前缀式)。图表示法又包括抽象语法树和无循环有向图(DAG)。三元式由三个部
转载 2024-01-12 18:59:58
171阅读
通过词法分析,我们成功得到了一个完整的token 文件以及符号表,接下来要做的就是语法/语义分析。我们采用的分析方法是算符优先算法,实现这一个算法的前提是文法必须是算符优先文法,因此我们首先要做的事就是构造算符优先文法,文法结构如下:1、构造文法并且初始化其各个属性。class Grammar { public: int getid(){ return id ; } char * ge
转载 2024-04-10 20:14:23
181阅读
# 如何实现NLP情感分析最新算法 ## 一、流程概述 在实现NLP情感分析最新算法的过程中,我们可以分为以下几个步骤: | 步骤 | 描述 | |------|------------------------| | 1 | 数据收集与处理 | | 2 | 模型选择与训练 | | 3 | 模型评估与调
原创 2024-03-02 06:26:36
78阅读
过去的NLP实验人员发现了一种揭示词组合的意义的算法,该算法通过计算向量来表示上述词组合的意义。它被称为隐语义模型(latent semantic analysis,LSA)。当使用该工具时,我们不仅可以把词的意义表示为向量,还可以用向量来表示整篇文档的意义。 在本章中,我们将学习这些语义或主题向量。我们将使用TF 目录1.TF-IDF向量及词形归并2.主题向量3.思想实验4.一个主题评分算法5.
语义计算的任务:解释自然语言句子或篇章各部分(词、词组、句子、段落、篇章)的含义。面临的困难:自然语言句子中存在大量的歧义,涉及指代、同义、多义、量词的辖域、隐喻等同一句子对于不同的人来说可能有不同的理解语义计算的理论、方法、模型尚不成熟格语法语义网络事件的语义关系优点:(1)直接而明确地表达概念的语义关系,模拟人的语义记忆和联想方式;(2)可利用语义网络的结构关系检索和推理,效率高。缺点:它不适
1.分词针对语料库中,所存在的单词的概率进行不同方法的概率计算,来选择分词概率最大的一种分词方法。 计算公式(Unigram-algorithm)为:P(‘你好中国’) = P(‘你’)*P(‘好’)*P(‘中’)*P(‘国’) P(‘你好中国’) =P(‘你好’)*P(‘中’)*P(‘国’) P(‘你好中国’) = P(‘你好’)*P(‘中国’) …但上述计算公式,可能会导致概率过小而溢出,所以
自然语言处理一直是人工智能领域的重要话题,更是18年的热度话题,为了在海量文本中及时准确地获得有效信息,文本分类技术获得广泛,也给大家带来了更多应用和想象的空间。本文根据AI科技大本营、学院联合达观数据分享的内容《NLP概述及文本自动分类算法详解》整理而成。 一、 NLP概述1.文本挖掘任务类型的划分 文本挖掘任务大致分为四个类型:类别到序列、序列到类
转载 2024-04-22 20:41:13
9阅读
一,TF-IDF介绍1,TF-IDF简介   TF-IDF是NLP中一种常用的统计方法,用以评估一个字词对于一个文件集或一个语料库中的其中一份文件的重要程度,通常用于提取文本的特征,即关键词。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。2,TF-IDF的计算公式在NLP中,TF-IDF的计算公式如下:tfidf = tf*idf.其中,tf是词频(
人工智能算法大体上来说可以分类两类:基于统计的机器学习算法(Machine Learning)和深度学习算法(Deep Learning)总的来说,在sklearn中机器学习算法大概的分类如下:1. 纯算法类(1).回归算法(2).分类算法(3).聚类算法(4)降维算法(5)概率图模型算法(6)文本挖掘算法(7)优化算法(8)深度学习算法2.建模方面(1).模型优化(2).数据预处理二、详细算法1
转载 2019-06-20 14:26:00
180阅读
思维导图:https://www.processon.com/diagraming/5c6e214ee4b056ae2a10eb9c本文争取以最短的文字,最简单的语言来描述NLP流程与w2v,详细原理会提供相应的链接.写到一半发现还是有很多地方省略过去= =写的不够详细1.NLP流程详解1.1数据清洗不感兴趣的、视为噪音的内容清洗删除,包括对于原始文本提取标题、摘要、正文等信息,对于爬取的网页内容
感谢的分享,补充整理了一些内容,今后会更新内容和知识点一、人工智能学习算法分类1. 纯算法类2.建模方面二、详细算法1.分类算法2.回归算法3.聚类算法4.降维算法5.概率图模型算法6.文本挖掘算法7.正则化8.深度学习算法三、建模方面1.模型优化·2.数据预处理一、人工智能学习算法分类人工智能算法大体上来说可以分类两类:基于统计的机器学习算法(Machine Learning)和深度学习算法(D
一 序  本文属于贪心NLP训练营学习笔记系列。从隐变量到EM算法。二 数据表示传统的数据表示,如图片、文本等是人能直观理解。但是不一定是好的表示,可能有冗余的特征,有噪音等。是不是转换为低维的空间会更好?很多算法包括机器学习都是为了寻找一个更好的表示方法。三  隐变量模型隐变量生成的例子:   Complete Case and Incomple
一、文本处理流程文本清洗:html标签与转义字符、多余空格、根据需要清除邮箱、账号、网址、手机号、作者信息等信息预处理:去除停用词、加载自定义词库(实体词库、垂直领域词库)、分词特征提取:关键词、实体词建模:文本分类、文本聚类、情感分析、标签提取优化:停用词库与自定义词库清洗与丰富、文本标签清洗、模型调整效果评估:满足线上使用要求,准确率、速度上线部署:部署api接口二、NLP算法深度学习在自然语
导读自然语言处理(Natural Language Processing,NLP)技术是与自然语言的计算机处理有关的所有技术的统称,其目的是使计算机能够理解和接受人类用自然语言输入的指令,完成从一种语言到另一种语言的翻译功能。 语义分析技术自然语言处理技术的核心为语义分析。语义分析是一种基于自然语言进行语义信息分析的方法,不仅进行词法分析和句法分析这类语法水平上的分析,而
导读自然语言处理(NLP)作为语言信息处理技术的一个研究方向,一直是人工智能领域的核心课题之一。日常生活中,我们有时会遇见一些有歧义或者令人费解的语句例子,这些例子让人直觉计算机理解人类语言太难了。本文从自然语言理解的本质、关键,以及自然语言的特点和理解难点四方面,对“NLP到底难在哪里”给出了通俗易懂的介绍。本文总字数6214,阅读约21分钟作者简介刘知远,清华大学计算机系副教授,研究方向为自然
作者 | songyingxin本项目记录了面试NLP算法工程师常会遇到的问题。1. 编程语言基础该文件夹下主要记录 python 和 c++ 的一些语言细节, 毕竟这两大语言是主流,基本是都要会的,目前还在查缺补漏中。C++面试题Python 面试题2. 数学基础该文件夹下主要记录一些数学相关的知识,包括高数,线性代数,概率论与信息论, 老宋亲身经历,会问到, 目前尚在查缺补漏中。概率论高等数学
转载 2023-08-14 14:22:49
85阅读
BM25算法,通常用来做检索相关性评分。首先对一个查询Query进行分词得qi,对每个搜索结果文档d,计算qi与文档d的相关性得分。最后将所有的qi进行加权求和,从而得到查询Query与文档d的相关性得分。公式中,Q表示查询Query,qi表示查询被解析得到的分词qi,d表示搜索结果文档d,Wi表示分词qi的权重,R(qi,d)表示分词qi与文档d的相关性得分。定义一个词与文档相关性的权重方法有很
  • 1
  • 2
  • 3
  • 4
  • 5