线性回归虽然是机器学习中,可以说是最简单的一个模型了,理他最基本的形式通常来说确实比较容易,但是其实如果扩展开来,其实还有很多了解的。线性回归,局部加权线性回归,lasso回归,岭回归,SMO算法,logistics回归(逻辑回归),softmax回归等等。更进一步,KL散度,协方差矩阵,相关系数,置信度,对比散度等等。线性回归对于最简单的线性回归,我认为就是一个单层的,没有激活函数的全连接神经网
转载
2024-03-19 06:58:56
163阅读
文章目录1.box-cox变换是什么?2.python实现2.1逆变换 1.box-cox变换是什么? Box-Cox变换是Box和Cox在1964年提出的一种广义幂变换方法,是统计建模中常用的一种数据变换,用于连续的响应变量不满足正态分布的情况。Box-Cox变换之后,可以一定程度上减小不可观测的误差和预测变量的相关性。Box-Cox变换的主要特点是引入一个参数,通过数据本身估计该参数进而确
转载
2024-03-21 14:27:26
70阅读
上期讨论完两种建模方式,这期讲一下经典的 Cox 回归,这个估计大家早就很熟悉了,但是这里还是需要梳理一下到底该怎么使用。01 Cox回归概念———————在介绍Cox回归模型之前,先介绍几个有关生存相关的概念。1.生存函数具有变量的观察对象的生存时间 T 大于某时刻 t 的概率,称为生存函数。生存函数 S(t,X) 又称为累积生存率。2. 死亡函数具有变量 X 的观察对象的生存时间 T 不大于某
转载
2023-11-29 14:35:18
79阅读
生存分析 三大块内容:1,描述性的生存率、中位生存期、生存曲线等,常用Kaplan-meier法2,比较分析两组的生存曲线是否有差别,log-rank检验(单个因素)3,cox比例风险回归类似logistic回归,多个变量对Y的影响,得到一个概率值,只不过加了时间多花点时间聊聊cox的感受 首先理解一个概念风险函数(hazard function)h(t)=f(t)/S(t)
转载
2024-05-13 10:02:34
53阅读
临床预测模型基础入门必看合集:R语言临床预测模型合集之前的推文给大家介绍了Cox回归各种校准曲线的实现方法,包括训练集和测试集:Cox回归校准曲线(测试集)的实现方法(上)在最后个大家留了一个疑问,今天继续:大家经常读文献就会发现这种COX回归测试集的校准曲线↓:目前好像并没有包可以直接实现,不过也不是非常困难,下面给大家介绍实现方法。本文目录: 文章目录准备数据训练集的校准曲线测试集的校准曲线
转载
2024-02-26 11:32:38
172阅读
Lasso 是一种估计稀疏线性模型的方法.由于它倾向具有少量参数值的情况,对于给定解决方案是相关情况下,有效的减少了变量数量。 因此,Lasso及其变种是压缩感知(压缩采样)的基础。在约束条件下,它可以回复一组非零精确的权重系数(参考下文中的 CompressIve sensing(压缩感知:重建医学图像通过lasso L1))。用数学形式表达,Lasso 包含一个使用 先验
转载
2024-05-11 08:56:14
569阅读
写在前面的话,此函数不适用于NHANES数据,请注意甄别。 在SCI文章中,交互效应表格(通常是表五)几乎是高分SCI必有。因为增加了亚组人群分析,增加了文章的可信度,能为文章锦上添花,增加文章的信服力,还能进行数据挖掘。在既往文章《scitb5函数1.7版本(交互效应函数P for interaction)发布----用于一键生成交互效应表、森林图》中,本人发布了自己编写的scitb5函数,用于
转载
2024-08-13 15:54:35
64阅读
我们的教程中曾详细讲述了SPSS线性回归分析,尽管线性回归可以满足绝大多数的数据分析,但是在现实情况中,并不能适用于所有的数据,当因变量和自变量之间的关系我们无法确定是否为线性或者其他非线性类型的模型关系时候,那么我们就需要用到曲线回归,来确定因变量和自变量之间到底最适合什么样的模型。 以下是若干样本的人数和β指标的数据,我们想分析人数和β指标
转载
2024-05-11 15:50:58
112阅读
SAS过程步对SAS数据集中的变量进行各种统计分析,并对分析结果进行呈现、输出。PROC 过程名 <data=数据集名> <其它选项>;
过程步语句</选项>;
run;例: 在回归分析过程步proc reg中,通过数据集选项规定将哪些结果保存为SAS数据集,例如covout 选项表示将参数估计的协方差矩阵输出到由outest=给出的SAS数据集中,model语
转载
2024-06-04 13:55:47
312阅读
今天要给大家分享的文章是Cone EB, Marchese M, Paciotti M, Nguyen DD, Nabi J, Cole AP, Molina G, Molina RL, Minami CA, Mucci LA, Kibel AS, Trinh QD. Assessment of Time-to-Treatment Initiation and Survival in a Coho
转载
2024-08-22 09:56:07
56阅读
现在有了《专辑》这个功能,其实更方便查看我们的历史教程啦。因为我五年前做生存分析研发这个代码的时候,就是根据基因表达量,把病人分成了高低表达两个组,不管是使用cox还是km,都是这样做的。但是最近有学生反映,使用cox还是km拿到的基因的生存效果是一致的, 就是风险因子和保护因子的分类问题。主要是靠HR值来判断咯。关于HR值In summary,HR = 1: No effectHR < 1
转载
2024-06-07 17:25:57
199阅读
box-cox 由于线性回归是基于正态分布的前提假设,所以对其进行统计分析时,需经过数据的转换,使得数据符合正态分布。 Box 和 Cox在1964年提出的Box-Cox变换可使线性回归模型满足线性性、独立性、方差齐性以及正态性的同时,又不丢失信息。 &n
转载
2024-03-05 03:55:15
45阅读
# Python Cox回归实现指南
## 引言
在统计学和生存分析中,Cox回归是一种广泛使用的方法,用于分析生存数据和确定影响生存时间的因素。作为一名经验丰富的开发者,我将向你介绍如何实现Python中的Cox回归。
## Cox回归的流程
下面是实现Cox回归的整体流程。我们将按照以下步骤进行操作:
| 步骤 | 描述 |
| --- | --- |
| 1. 数据准备 | 加载并处理
原创
2024-01-29 04:58:36
493阅读
Cox回归是生存分析中运用最多的一个模型,又称为比例风险回归模型(proportional hazards model)。是由英国统计学家D.R.Cox在1962年提出的,为了表示对他的尊敬,所以大家以他的名字命名这个模型。这是一种半参数回归模型,以结局和生存时间为因变量,还可以同时分析多个因素对生存期的影响,碰到数据缺失的情况也不怕!照样可以分析。另外,该回归方法对于数据分布也没啥要求。这些优点
转载
2024-06-17 04:00:36
411阅读
基因组规模上的聚合数据类型的相似性网络融合(本文是对similarity network fusion for aggregating data types on a genomic scale 整体文章的翻译,对于后面理论公式部分可以参照该朋友的笔记)摘要近期的技术已经使收集不同类型的全基因组数据十分划算,结合这些数据去创建一个给定的疾病或生物过程的一个全面视图的计算方法是有必要的。相似网络融合
转载
2024-06-18 05:53:42
157阅读
#简单线性回归:
##常用绘图:
fit<-lm(weight~height,data=women)
summary(fit)
plot(women$height,women$weight,xlab="Height (in inches)",ylab="Weight (in pounds)")
abline(fit)
fit2<-lm(mpg~wt+I(wt^2),data
转载
2024-01-21 08:08:49
131阅读
在使用SPSS进行COX回归分析时,不仅需要逐个变量选入单因素回归,还需要从冗长的输出结果中找到我们要的HR值、95%CI、P值。实际生活中,我们遇到的数据,又通常都有十几个变量,工作量可以说比较大了!更别提分析完毕后,还要整合三线表,添加表头与脚注,整理格式......,令人心累!因此,在这里为大家介绍一个可以快速整合SPSS分析结果的统计小工具——风暴统计!这是由浙江中医药大学郑卫军教授开发的
转载
2024-07-26 08:23:34
89阅读
我们既往已经在文章《手把手教你使用R语言制作临床决策曲线》介绍了怎么使用rmda包制作了临床决策曲线,但是rmda包只能制作logistic回归模型的临床决策曲线,原来制作COX回归模型的stdca包R上下载不到。有粉丝留言向我推荐了ggDCA包,今天来演示一下怎么使用ggDCA包制作COX回归模型临床决策曲线。 ggDCA包由我们R语言大神,南方医科大学的博导Y叔制作,使用ggDCA包可以制作l
转载
2023-07-31 10:49:03
282阅读
多项式回归用于解决样本特征与样本值存在非线性关系的回归问题多项式回归的原理多项式回归的原理是假定样本特征与观测值之间呈现非线性关系,比如y=ax3+bx2+cx+d 或者:y=ax1k+bx2k+cx1k-1x2+dx2k-1x1+ex1k-2x22+……+αx1+θx2+C 那么多项式回归所做的工作就是对样本进行处理,使其增加特征,增加的特征分别是每个原来特征组合的k次方、k-1次方,……一直到
转载
2024-03-07 10:12:38
161阅读
相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。相关系数是用以反映变量之间相关关系密切程度的统计指标。 从协方差出发,了解相关系数的真实含义和数学计算。
期望值分别为E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为:从直观上来看,协方差表示的是两个变量总体误差的期望。如果两个
转载
2024-03-15 10:23:45
50阅读