cnn发展史这是imageNet比赛的历史成绩可以看到准确率越来越高,网络越来越深。加深网络比加宽网络有效的多,这已是公认的结论。 cnn结构演化图 AlexNet诞生于2012年,因为当时用了两个GPU(硬件设备差),所以结构图是2组并行网络结构总共8层,5个卷积层,3个全连接层,最后输出1000个分类 分层结构图简单解释如下:conv1:输入为224x
转载
2024-03-03 07:37:59
327阅读
在深度学习应用中,算法主要分为三大类:用于影像图像数据进行分析处理的卷积神经网络(CNN)用于文本分析自然语言处理的递归神
原创
2022-06-23 17:50:18
977阅读
神经网络核心组件:层:神经网络的基本结构,将输入张量转变为输出张量;模型:层构成的网络;损失函数:参数学习的目标函数,通过最小化损失函数来学习参数;优化器:确定如何使损失函数最小;卷积神经网络:包括卷积层、池化层、全连接层和输出层;一般处理网状数据;卷积层: 局部感知,对于图片中的每一个特征首先局部感知,然后更高层次对局部进行综合操作,从而得到全局信息。卷积运算:用卷积分别乘以输入张量中的每个元素
转载
2024-05-21 22:40:51
59阅读
一、LeNet-5论文:http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf这个可以说是CNN的开山之作,由Yann LeCun在1998年提出,可以实现对手写数字、字母的识别。结构如下: LeNet-5图中的 subsampling,即“亚采样”,就是我们前面说的pooling,因为pooling其实就是对原图像进行采样的一个过程。它总
转载
2023-12-21 10:02:13
143阅读
**深度学习算法简介**1、 深度学习主流算法包括:1.1 CNN (卷积神经网络) 卷积神经网络(CNN)是最常见的深度学习方法之 一。自20 世纪80 年代后期以来,CNN 已应用于视觉识别与分类任务,特别是LeCun 等在1998 年提出了LeNet-5,基于CNN 的相关研究随即成为研究热点,伴随图形处理(Graphical Processing Unit,GPU)计算能力的发展和大量标记
转载
2023-12-19 21:41:31
133阅读
一、常规卷积操作假设有一个3×3大小的卷积层,其输入通道为3、输出通道为4。 那么一般的操作就是用4个(333)的卷积核来分别同输入数据卷积,得到的输出是只有一个通道的数据。之所以会得到一通道的数据,是因为刚开始3×3×3的卷积核的每个通道会在输入数据的每个对应通道上做卷积,然后叠加每一个通道对应位置的值,使之变成了单通道,那么4个卷积核一共需要(3×3×3)×4 =108个参数。二、深度可分离卷
转载
2024-03-19 13:45:27
230阅读
一、前言 深度学习一直都是被几大经典模型给统治着,如CNN、RNN等等,它们无论再CV还是NLP领域都取得了优异的效果,那这个GCN是怎么跑出来的?是因为我们发现了很多CNN、RNN无法解决或者效果不好的问题——图结构的数据。我们做图像识别,对象是图片,是一个二维的结构,于是人们发明了CNN这种神奇的模型来提取图片的特征。CNN的核心在于它的ker
转载
2024-03-19 13:51:56
9阅读
本文精心选取了 10 个 CNN 体系结构的详细图解进行讲述。由作者精心挑选。这些图解展示了整个模型的精华,无需去逐个浏览那些 Softmax 层。除了这些示意图,作者还提供了一些注释,阐述了它们是如何不断演变的——卷积层从 5 到 50 个、从普通的卷积层到卷积模块、从 2~3 tower 到 32 tower 、卷积核从 7⨉7 到 5⨉5 。
所谓“常见”,是指这些模型的预训练权
转载
2021-06-17 20:38:57
1384阅读
@author:wepon本文介绍多层感知机算法,特别是详细解读其代码实现,基于Python theano,代码来自:Convolutional Neural Networks (LeNet)。经详细注释的代码和原始代码:放在我的github地址上,可下载。一、CNN卷积神经网络原理简介要讲明白卷积神经网络,估计得长篇大论,网上有很多博文已经写得很好了,所以本文就不重复了,如果你了解CN
转载
2024-05-09 12:47:18
43阅读
CNN(卷积神经网络)示意图:网络架构 一个卷积神经网络由若干卷积层、Pooling层、全连接层组成。常用架构模式为: INPUT -> [[CONV]*N -> POOL?]*M -> [FC]*KCONV层输出值的计算步长为1时的公式 其中,动态计算过程Pooling层输出值的计算 Pooling层主要的作用是下采样,通过去掉Feature Map中不重要的样本,进一步减少参
转载
2024-05-08 23:21:07
83阅读
行人检测 概述:RCNN系列,YOLO系列和SSD系列。其中RCNN系列算法是现在使用的最广泛的基于深度学习的行人检测算法。 在说行人检测之前不得不说一下目标检测。行人检测是目标检测下的一个分支,其检测的标签是行人。我理解的目标检测是准确地找到给定图片中对象的位置,并标出对象的类别。目标检测所要解决的问题是目标在哪里以及其状态的问题。但是,这个
转载
2024-06-03 10:15:03
58阅读
这次讲一讲如何在keras中简单实现CNN对手写数字的识别.
首先在上一课的讲述中,图像现在是分RGB三个通过,以立方体的形式来检测和卷积的,一般一维的叫做向量vector,那么三维这个立方体矩阵就叫做tensor张量。
model2.add( Convolution2D(25,3,3,
转载
2024-05-08 17:32:16
52阅读
1.前言(1)神经网络的缺陷在神经网络一文中简单介绍了其原理,可以发现不同层之间是全连接的,当神经网络的深度、节点数变大,会导致过拟合、参数过多等问题。(2)计算机视觉(图像)背景通过抽取只依赖图像里小的子区域的局部特征,然后利用这些特征的信息就可以融合到后续处理阶段中,从而检测更高级的特征,最后产生图像整体的信息。距离较近的像素的相关性要远大于距离较远像素的相关性。对于图像的一个区域有用的局部
转载
2024-05-22 19:57:48
80阅读
机器学习算法完整版见fenghaootong-github卷积神经网络原理(CNN)卷积神经网络CNN的结构一般包含这几个层:输入层:用于数据的输入卷积层:使用卷积核进行特征提取和特征映射激励层:由于卷积也是一种线性运算,因此需要增加非线性映射池化层:进行下采样,对特征图稀疏处理,减少数据运算量。全连接层:通常在CNN的尾部进行重新拟合,减少特征信息的损失CNN的三个特点:局部连接:这
转载
2023-10-12 11:42:38
98阅读
文章目录为什么使用CNN彩色图片-CNNMax PollingFlatten 是全连接神经网络的简化版,一般用于图像识别 为什么使用CNN图像只需要识别一部分同样的参数出现在不同的区域对图像放缩以上情况都可以使用CNN,减少神经网络的参数。CNN的大致过程如图所示。 先了解一下Convolution的做法: 假设一个矩阵(图像信息可以写成矩阵的形式),有两个Filter(过滤器,卷积核)也是矩
转载
2024-03-15 13:50:37
60阅读
卷积神经网络卷积神经网络(Convolutional Neural Network)简称CNN,CNN是所有深度学习课程、书籍必教的模型,CNN在影像识别方面的为例特别强大,许多影像识别的模型也都是以CNN的架构为基础去做延伸。另外值得一提的是CNN模型也是少数参考人的大脑视觉组织来建立的深度学习模型,学会CNN之后,对于学习其他深度学习的模型也很有帮助,本文主要讲述了CNN的原理以及
转载
2023-10-13 23:25:45
94阅读
(一)目标检测概述 (二)目标检测算法之R-CNN (三)目标检测算法之SPPNet (四)目标检测算法之Fast R-CNN 写在最前面:https://zhuanlan.zhihu.com/p/31426458,这是某知乎大佬关于我今天所写的超级棒的文章,放在最前面,完全可以不看我的文章去看这位大佬的。当然,大佬的文章深度和精度都很足,因此文章篇幅比较长
转载
2024-08-08 22:22:33
129阅读
传统对象识别-模式识别传统的模式识别神经网络(NN)算法基于梯度下降,基于输入的大量样本特征数据学习有能力识别与分类不同的目标样本。这些传统模式识别方法包括KNN、SVM、NN等方法、他们有一个无法避免的问题,就是必须手工设计算法实现从输入图像到提取特征,而在特征提取过程中要考虑各种不变性问题、最常见的需要考虑旋转不变性、光照不变性、尺度不变性、通过计算图像梯度与角度来实现旋转不变性、通过归一化来
转载
2024-04-02 08:58:55
76阅读
主流的深度学习模型有哪些?谷歌人工智能写作项目:小发猫常见的深度学习算法主要有哪些?深度学习常见的3种算法有:卷积神经网络、循环神经网络、生成对抗网络神经网络软件有哪些。卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习的代表算法之一。循环神经网络(Recur
转载
2024-04-07 20:55:03
62阅读
ISBN:978-7-115-44753-0作者:【美】Aditya Bhargava译者:袁国忠阅读时间:2021-08-15页数:184页推荐指数:★★★★★算法讲解非常通
原创
2022-06-22 12:10:06
102阅读
点赞