实验室正在弄一个项目,在读有关论文的时候就发现一个令我疑惑的点:在论文里反复强调了激活函数(又叫做活化函数)的重要性。这让我很迷惑,因为在我当前的认知里,激活函数是一类相当简单的函数,比如relu函数:$f(x)=\max(0,x)$,只是一个分段线性的函数啊,为什么会有如此重要的意义?带着疑问找到了这一篇讲的很好的文章,受益匪浅:  考虑一个不带激活函数的单层感知机:one-layer pe
本文总结深度学习的损失函数及其优缺点。激活函数是深度学习模型的重要成分,目的是将线性输入转换为非线性。常见的激活函数有sigmoid,tanh,ReLU等1.sigmoidSigmoid 非线性函数将输入映射到 【0,1】之间。它的数学公式为:历史上, sigmoid 函数曾非常常用,然而现在它已经不太受欢迎,实际很少使用了,因为它主要有两个缺点:函数饱和使梯度消失sigmoid 神经元在值为 0
Introduction激活函数(activation function)层又称 非线性映射 (non-linearity mapping) 层,作用是 增加整个网络的非线性(即 表达能力 或 抽象能力)。深度学习之所以拥有 强大的表示能力 ,法门便在于 激活函数 的 非线性 。 否则,就算叠加再多的线性卷积,也无法形成复杂函数。然而物极必反。由于 非线性设计 所带来的一系列 副作用(如 期望均值
8.Activation Function8.1 Sigmoid 型函数 σ(x)=11+e(−x) σ ( x ) = 1
转载 2024-04-01 08:23:32
60阅读
 Regions with CNN features (R-CNN)基于卷积神经网络特征的区域方法如下图。1.输入图像。2.基于原始图像提取种类独立的区域,构成候选区域集。3.对第2步提取出来的所有区域计算CNN特征,得到特征向量。4.使用特定的SVM分类器对第3步的特征向量进行分类。 主要有两个重要的观点:(1) 将CNN结构应用到候选区域 (2) 针对标记数据很少
理解dropout 开篇明义,dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃。注意是暂时,对于随机梯度下降来说,由于是随机丢弃,故而每一个mini-batch都在训练不同的网络。 dropout是CNN中防止过拟合提高效果的一个大杀器,但对于其为何有效,却众说纷纭。在下读到两篇代表性的论文,代表两种不同的观点,特此分享给大家。组合派 参考文献中
转载 5月前
34阅读
卷积运算的定义、动机(稀疏权重、参数共享、等变表示)。一维卷积运算和二维卷积运算。 反卷积(tf.nn.conv2d_transpose) 池化运算的定义、种类(最大池化、平均池化等)、动机。 Text-CNN的原理。 利用Text-CNN模型来进行文本分类1. 卷积运算卷积网络,也叫卷积神经网络(CNN),是一种专门依赖处理具有类似网络结构的数据的神经网络。卷积是一种特殊的线性运算。卷积网络是指
导语在深度神经网络中,通常使用一种叫修正线性单元(Rectified linear unit,ReLU)作为神经元的激活函数。ReLU起源于神经科学的研究:2001年,Dayan、Abott从生物学角度模拟出了脑神经元接受信号更精确的激活模型,如下图: 其中横轴是时间(ms),纵轴是神经元的放电速率(Firing Rate)。同年,Attwell等神经科学家通过研究大脑的能量消耗过程,推测神经元的
背景我们知道,目前,深度学习十分热门,深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。从广义上来说,NN(或是更美的DNN)可以认为包含了CNN、RNN这些具体的变种形式。神经网络技术起源于上世纪五、六十年
转载 2024-03-19 13:43:29
104阅读
CNNCNN简介卷积神经网络(Convolutional Neural Networks,简称CNN)。卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT-CONV-RELU-POOL-FC。初识卷积首先,我们去学习卷积层的模型原理,在学习卷积层的模型原理前,我们需要了解什么是卷积,以及CNN中的卷积是什么样子的。大家学习数学时都有学过卷积的知识,微积分中卷积的表
目录第一天第二章:简单的神经网络第三章:深度学习工作流程卷积模块介绍卷积池化层池化层书中的代码池化层相关资料提取 (各)层(的)结构如何提取参数及自定义初始化LeNetAlexNetVGGNetCIFAR 10VGGNetGoogLeNetInception 模块ResNet案例-MNIST手写数字分类实现cifar10分类图像增强定义基本模块 第一天官网:PyTorch Markdown语法:
(4)Leaky ReLUReLU是将所有的负值设置为0,造成神经元节点死亡的情况。相反,Leaky ReLU是给所有负值赋予一个非零的斜率。优点:(1)神经元不会出现死亡的情况。(2)对于所有的输入,不管是大于等于0还是小于0,神经元不会饱和(3)由于Leaky ReLU线性、非饱和的形式,在SGD中能够快速收敛。(4)计算速度要快很多。Leaky ReLU函数只有线性关系,不需要指数计算,不管
转载 2024-03-18 17:44:02
1030阅读
正则表达式正则表达式为高级的文本模式匹配,抽取,与/或文本形式的搜索和替换功能提供了基础。正则表达式是一些由字符和特殊符号组成的字符串,它们描述了模式的重复或者表述多个字符。转义符\在正则表达式中,有很多有特殊意义的是元字符,比如\n和\s等,如果要在正则中匹配正常的"\n"而不是"换行符"就需要对""进行转义,变成’\’。在python中,无论是正则表达式,还是待匹配的内容,都是以字符串的形式出
其实一直在做论文阅读心得方面的工作,只是一直没有分享出来,这篇文章可以说是这个前沿论文解读系列的第一篇文章,希望能坚持下来。简介论文提出了动态线性修正单元(Dynamic Relu,下文简称 DY-ReLU),它能够依据输入动态调整对应分段函数,与 ReLU 及其静态变种相比,仅仅需要增加一些可以忽略不计的参数就可以带来大幅的性能提升,它可以无缝嵌入已有的主流模型中,在轻量级模型(如 Mobile
前言论文地址: https://arxiv.org/pdf/1505.00853.pdf.论文贡献:这篇论文并没有提出什么新的激活函数,而是对现有的非常火的几个非饱和激活函数作了一个系统性的介绍以及对他们的性能进行了对比。最后发现,在较小的数据集中(大数据集未必),Leaky ReLU及其变体(PReLU、RReLU)的性能都要优于ReLU激活函数;而RReLU由于具有良好的训练随机性,可以很好的
转载 2024-04-25 14:05:54
0阅读
最近在阅读 Airbnb 的论文 Applying Deep Learning to Airbnb Search。阅读的过程中,我发现作者在谈及特征归一化的必要性时,有如下表述:Feeding values that are outside the usual range of features can cause large gradients to back propagate. T
转载 2024-08-01 21:01:57
14阅读
#***文章大纲***# 1. Sigmoid 和梯度消失(Vanishing Gradients) 1.1 梯度消失是如何发生的? 1.2 饱和神经元(Saturated Neurons) 2. ReLU 和神经元“死亡”(dying ReLU problem) 2.1 ReLU可以解决梯度消失问题 2.2 单侧饱和 2.3 神经元“死亡”(dying
具体来说,在门控注意力单元中,会有一个额外的投影产生输出,该输出是在输出投影之前通过逐元素的乘法组合得到的。注意力是 t
原创 2024-08-08 10:19:21
98阅读
为什么要引入激活函数?如果不用激活函数(其实相当于激励函数是f(x)=x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机了。正因为上面的原因,我们决定引入非线性函数作为激励函数,这样深层神经网络就有意义了(不再是是输入的线性组合,可以逼近任意函数)。最早的想法是sigmoid函数或者ta
在该文章的两大创新点:一个是PReLU,一个是权值初始化的方法。下面我们分别一一来看。  PReLU(paramter ReLU)所谓的PRelu,即在 ReLU激活函数的基础上加入了一个参数,看一个图就明白了:右边的图上多了一个参数吧,在负半轴上不再为0,而是一个可以学习的斜率。  很容易明白。实验结果显示该方法可以提高识别率。权值初始化的方法: 对于文中
转载 2024-03-01 12:42:36
157阅读
  • 1
  • 2
  • 3
  • 4
  • 5