PyTorch 在学术圈里已经成为最为流行的深度学习框架,如何在使用 PyTorch 时实现高效的并行化?在芯片性能提升有限的今天,分布式训练成为了应对超大规模数据集和模型的主要方法。本文将向你介绍流行深度学习框架 PyTorch 最新版本( v1.5)的分布式数据并行包的设计、实现和评估。论文地址:https://arxiv.org/pdf/2006.15704.pdfPyTorch 是深度学习
# 如何实现“Paddle比PyTorch训练效果差”的实验
在深度学习领域,选择合适的框架是成功的关键因素之一。PaddlePaddle与PyTorch都是非常流行的深度学习框架,但你可能会想知道如何比较这两个框架的训练效果。本文将带领你逐步完成这一实验,最终得出“Paddle比PyTorch训练效果差”的结论。
## 实验流程
在开始之前,我们先概述一下整个实验的流程。以下是每一步的流程
# PyTorch加载模型效果不如训练效果的探讨
在深度学习中,模型的训练与评估是两个重要环节。在使用PyTorch等深度学习框架时,有时我们会遇到加载已保存的模型效果不如在训练期间的结果。这种情况可能会让我们感到困惑,尤其是在我们已经得到了一个良好的训练结果之后。本文将探讨可能导致这一问题的原因,并给出一些解决方案。
## 理论背景
深度学习模型通常使用训练集进行训练,并使用验证集或测试集
原创
2024-08-07 08:03:48
319阅读
学习笔记 文章目录学习笔记1. pytorch二、pytorch学习0. 先验概率后验概率:1. 函数2. python 对比 jupter3. pytorch读取数据4. tensorboard6. transform常用函数7. dataloader8. 神经网络9. 网络模型的训练-加载10. 使用GPU训练11. .eval()和torch.no_grad()区别 1. pytorch一、
首先,eval模式和train模式得到不同的结果是正常的。我的模型中,eval模式和train模式不同之处在于Batch Normalization和Dropout。Dropout比较简单,在train时会丢弃一部分连接,在eval时则不会。Batch Normalization,在train时不仅使用了当前batch的均值和方差,也使用了历史batch统计上的均值和方差,并做一个加权平均(mom
转载
2023-09-21 06:27:56
191阅读
前言: 第一篇博客,记录下自己的学习心得。如有谬误,欢迎指正。为什么用model.eval()当网络中存在BN层或者Dropout,在测试的时候需要固定住固定BN层和dropout层。关于BN层的详细介绍可以参考这篇博文:Pytorch的BatchNorm层使用中容易出现的问题训练数据的时候acc可以达到99%,但是测试时acc只有33%,显然这是不行的。查询了一些资料给出的解决方案如下:、删去相
转载
2023-10-08 11:32:58
195阅读
这篇文章主要介绍了python的代码保存到文档中 打不开怎么办,具有一定借鉴价值,需要的朋友可以参考下。希望大家阅读完这篇文章后大有收获,下面让小编带着大家一起了解一下。Source code download: 本文相关源码 大家好,小编为大家解答python的代码保存到文档中 打不开怎么办的问题。很多人还不知道python代码保存在哪里怎么查,现在让我们一起来看看吧! Posted b
转载
2024-09-14 22:00:42
14阅读
1,为什么提出ResNet网络?在不断加深的神经网络的深度时,会出现退化的问题,即准确率会先上升然后达到饱和,再持续增加深度后其准确率下降了。这不是由于过拟合导致的,因为这不仅导致训练集上误差增大,测试集上误差也增大。原因是随着网络越来越深,训练变得越来越难,网络的优化变得越来越难。理论上,层度越深的网络其学习到语义信息越丰富,提取的特征效果会越好;但是,实际上,由于深度增加导致网络难以训练,产生
转载
2024-05-02 11:24:57
322阅读
Hub是什么?Hub本意是中心,docker有docker Hub,大家可以把自己创建的镜像打包提交到docker hub上,需要的时候再pull下来,非常方便,那么模型是不是也可以这样玩呢?完全可以啊!很多时候我们不需要从头开始训练模型,如果有预训练好的模型,直接做迁移学习就可以,但是传统的方式基本上都需要从各个官网上去下载,模型比较大
转载
2023-10-18 21:22:56
185阅读
原论文名:《ImageNet Classification with Deep Convolutional Neural Networks》alexnet网络中引入了 Relu激活函数,标准化LRN(Local Response Normalization),Dropout,覆盖的池化操作(Overlapping Pooling) 等 1.ReLu激活函数alexn
转载
2024-10-12 09:07:51
29阅读
pytorch保存模型非常简单,主要有两种方法:只保存参数;(官方推荐)保存整个模型 (结构+参数)。 由于保存整个模型将耗费大量的存储,故官方推荐只保存参数,然后在建好模型的基础上加载。一、只保存参数1.保存 一般地,采用一条语句即可保存参数:torch.save(model.state_dict(), path)其中model指定义的模型实例变量,如 model=vgg16( ), path是
转载
2023-09-04 14:09:59
126阅读
前言 关于 PyTorch 炼丹,本文作者表示:如果你有 8 个 GPU,整个训练过程只需要 2 分钟,实现 11.5 倍的性能加速。如何提升 PyTorch「炼丹」速度?最近,知名机器学习与 AI 研究者 Sebastian Raschka 向我们展示了他的绝招。据他表示,他的方法在不影响模型准确率的情况下,仅仅通过改变几行代码,将 BERT 优化时间从 22.63 分钟缩减到 3.1
转载
2023-09-16 21:30:36
113阅读
1、过拟合与欠拟合的区别是什么,什么是正则化? 不同曲线,对于样本的表达能力,各不相同,上图的几根曲线中:曲线1,使用一阶曲线,即直线模型,过于简单,出现大量的错误分类,此时的误差较大,模型欠拟合。曲线2,使用高阶曲线,几乎是完美的完成拟合任务,但如此严格的模型,当新的样本与训练样本稍有不同,极有可能出现误判,此时模型过拟合。而曲线3,一条相对平滑的曲线,基本能完成拟合任务
转载
2023-11-20 11:31:18
83阅读
Pytorch预训练模型以及修改pytorch中自带几种常用的深度学习网络预训练模型,torchvision.models包中包含alexnet、densenet、inception、resnet、squeezenet、vgg等常用网络结构,并且提供了预训练模型,可通过调用来读取网络结构和预训练模型(模型参数)。往往为了加快学习进度,训练的初期直接加载pretrain模型中预先训练好的参数。加载m
转载
2024-01-24 23:23:47
122阅读
定义是否使用GPU可有可无,默认为 cpudevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")训练数据:BATCH_SIZE = 64 :批处理尺寸,即一次处理图像的张数 加载训练数据 : 以cifar10 为例trainset = torchvision.datasets.CIFAR10(root='./dat
转载
2023-07-10 18:35:55
109阅读
Pytorch训练代码框架前言自己在学习和coding的过程中,感觉每次搞一个模型,需要写一堆的过程代码(大部分是可复用的),有的时候还需要从之前或者各个博客cv一点代码,这样开发起来效率可能比较低,所以整理了一份相对来说比较全面的Pytorch建模&训练框架,一些简单的trick也整理放在了里面,方便取用。因为个人用NLP比较多,这个框架主要也是在预训练+微调这一范式下写的,但是想去掉预
转载
2023-12-01 11:36:50
100阅读
PyTorch学习笔记(4)_模型、数据、训练过程的可视化Tensorboard 文章目录PyTorch学习笔记(4)_模型、数据、训练过程的可视化Tensorboard0 本章概要1 安装TensorBoard1.1 数据和模型准备1.2 设置TensorBoard2 写入TensorBoard3 在TensorBoard中查看模型4 添加一个“Projector”到TensorBoard5 在
转载
2024-06-03 15:12:59
66阅读
事实上,你的模型可能还停留在石器时代的水平。估计你还在用32位精度或*GASP(一般活动仿真语言)*训练,甚至可能只在单GPU上训练。如果市面上有99个加速指南,但你可能只看过1个?(没错,就是这样)。但这份终极指南,会一步步教你清除模型中所有的(GP模型)。不要让你的神经网络变成这样。(图片来源:Monsters U)这份指南的介绍从简单到复杂,一直介绍到你可以完成的大多数PITA修改,以充分利
简介ResNet(Residual Neural Network)由微软研究院的Kaiming He等四名华人提出,通过使用ResNet Unit成功训练出了152层的神经网络,并在ILSVRC2015比赛中取得冠军,在top5上的错误率为3.57%,同时参数量比VGGNet低,效果非常突出。ResNet的结构可以极快的加速神经网络的训练,模型的准确率也有比较大的提升。同时ResNet的推广性非常
转载
2023-10-21 22:12:39
496阅读
项目结构总结一般项目都包含以下几个部分:
模型定义
数据处理和加载
训练模型(Train&Validate)
训练过程的可视化
测试(Test/Inference)
主要目录结构: - checkpoints/: 用于保存训练好的模型,可使程序在异常退出后仍能重新载入模型,恢复训练
- data/:数据相关操作,包括数据预处理、dataset实现等
-
转载
2023-07-05 10:21:00
212阅读