文章目录一、Resnet18-cifar10二、Million-AID数据加载总结 一、Resnet18-cifar10CIFAR-10 数据集由 10 类中的 60000 张 32x32 彩色图像组成,每类 6000 张图像。有 50000 张训练图像和 10000 张测试图像。数据集分为五个训练批次和一个测试批次,每个批次有 10000 张图像。测试批次包含来自每个类的 1000 个随机选择
例子下面举个多维tensor例子简单说明。下面是个 2 * 3 * 4 的tensor。[[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]],
[[ 13 14 15 16]
[ 17 18 19 20]
[ 21 22 23 24]]]tf.reduce_sum(tensor, axis=0) axis=0 说明是按第一
如果对你有用的话,希望能够点赞支持一下,这样我就能有更多的动力更新更多的学习笔记了。?? 使用ResNet进行CIFAR-10数据集进行测试,这里使用的是将CIFAR-10数据集的分辨率扩大到32X32,因为算力相关的问题所以我选择了
转载
2024-05-14 14:02:15
145阅读
1.ResNet网络1.1 ResNet解决的关键问题是什么?是过拟合吗?是梯度消失吗?都不是,或者说不完全是。过拟合的最明显表征是方差大,即训练集上效果好,测试集上效果差,但是深层模型在训练和测试上效果都差。而梯度消失的问题在BN层(本质上控制了每一层的模值输入,将上一层的输出从饱和区拉到了非饱和区,使得每一层的梯度都维持在较合理的范围内)引入之后也解决了大半。 ResNet解决的最关键问题是:
转载
2024-03-27 12:37:26
31阅读
1:卷积层多为3x3filter,相同output形状的层有相同个数滤波器,如果特征图变为一半大小,滤波器个数加倍(为了保存layer的时间复杂性)2:进一步增加shortcut做resnet时,输入输出不变时就简单的加shortcut,但是遇到维度增加(64->128,128->256)时有两种选择:多余的dimension都补0(好处是不增加参数),或者用以下公式的线性映射,(利用
转载
2024-04-05 08:13:41
60阅读
科普知识NIPS(NeurIPS),全称神经信息处理系统大会(Conference and Workshop on Neural Information Processing Systems),是一个关于机器学习和计算神经科学的国际会议。该会议固定在每年的12月举行,由NIPS基金会主办。NIPS是机器学习领域的顶级会议 。在中国计算机学会的国际学术会议排名中,NIPS为人工智能领域的A
转载
2024-08-20 18:10:20
141阅读
作者:Ayoosh Kathuria编译:ronghuaiyang导读这个系列介绍了如何在CIFAR10上高效的训练ResNet,到第4篇文章为止,我们使用单个V100的GPU,可以在79s内训练得到94%的准确率。里面有各种各样的trick和相关的解释,非常好。我们研究了mini-batch对训练的影响,并使用更大的minibatch来减少训练时间到256秒。这里,我们研究了minibatch的
ResNet详解论文亮点:超深的网络结构(突破1000层)提出residual模型使用BN加速训练,丢弃(Dropout) 残差结构解决的问题梯度消失或梯度爆炸网络退化的问题残差结构 左边的图是针对于网络层数较少的残差结构,ResNet-34 右边的图是针对网络层数比较神的残差结构,ResNet-50/101/152 残差结构是通过主线的残差结构,加上短接线的输出结构,经过激活函数,这里值得注意的
转载
2024-03-21 09:16:02
50阅读
第一部分: 开发新模块 – DNN 6 第二部分: 模块里使用EF Code First 如果你还不知道DotNetNuke是什么的话,请访问 www.dotnetnuke.com 如果你还不知道如何在本地安装DNN 6, 请猛戳 http://codeciel.blogspot.fr/2012/03/how-to-install-dotnetn
对于keras加载训练数据,官方上没有详说。然而网上查各种资料,写法太多,通过自己跑代码测试总结以下几条,方便自己以后使用。总的来说keras模型加载数据主要有三种方式:.fit(), .fit_generator()和.train_on_batch()。1.fit():上函数,各个参数的意义就不解释了fit(x=None, y=None, batch_size=None, epochs=1, v
近来非常多的朋友会向我询问Kaggle某个竞赛的开源代码或者Top的方案和思路在哪里可以获得?有时我不是很忙的时候会去对应的竞赛中把Top的链接找出来一起整理发过去,但也有的时候可能会比较忙,不一定会回复,久而久之可能就忘记回复了。不过最近我发现一个汇总了几乎所有Kaggle历史竞赛解决方案和Top思路的网页,新的比赛一结束,这个名单就会更新。这个网页包含了:几年前的数据竞赛到上个月竞赛的所有To
为什么需要IbatisNet??我们先假定几个过去和现在使用ADO.NET操作数据库的场景1 场景一 我们很难将操作数据库的sql语句从代码中分离,在著名的petshop3.0等例子也使用数据访问层将sql集中到一起,为此当我们改变sql语句不得不重新编译整个项目的代码2 场景二 我们很难将实际的外观层,业务逻辑层和数据访问层分离,举例,你通过查询语句”Select A.Name,B.Qty
目录1. ResNet 介绍2. ResNet 网络介绍(ResNet34)3. 搭建ResNet 网络residual blockResNet pre 传播layer1layer2layer3、4全连接层的forwardResNet 网络的参数个数summary4. 训练网络5. 预测图片6. Code7. 迁移学习1. ResNet 介绍ResNet 的亮点:超深的网络结构,可以突破
转载
2024-03-23 09:52:58
410阅读
介绍人脑可以轻松识别和区分图像中的对象。例如,给定猫和狗的图像,在十亿分之一秒之内,我们就将两者区别开来,而我们的大脑则意识到了这种差异。如果机器模仿这种行为,那么它与我们所能获得的人工智能非常接近。随后,计算机视觉领域旨在模仿人类视觉系统,并且有许多里程碑打破了这方面的障碍。此外,如今的机器可以轻松地区分不同的图像,检测物体和面部,甚至生成不存在的人的图像!令人着迷,不是吗?当我从
转载
2024-03-26 19:59:51
75阅读
前言最近一段时间因目前在职公司的一些情况及个人的职业规划,参加面试几家金融股票应用软件及信息管理的企业,对于问的比较统一的或是比较多的就是如何利用服务器的消息推送实现股票证券行情的实时更新,根据个人的项目总结及网上其他博主的资源总结了利用SignalR技术实现实施更新。SignalR概述Asp.net SignalR是微软为实现实时通信的一个类库。一般情况下,SignalR会使用JavaScrip
从编程实现角度学习Faster R-CNN(附极简实现)
GoDeep 关注
2018.03.11 15:51* 字数 5820 阅读 1897评论 2喜欢 24 转载自:https://zhuanlan.zhihu.com/p/32404424 1 概述在目标检测领域, Faster R-CNN表现出了极强的生命力,
转载
2024-10-15 09:42:53
28阅读
#ResNet 因为网络传播的层次太深,后面的很难传播到前面,所以增加了一个短接层,深层次网络可以退化成一个浅层次网络
#filter_num 卷积核数量
#stride 步长
class BasicBlock(layers.Layer):
def __init__(self,filter_num,stride=1):
super(BasicBlock, self).
转载
2024-10-13 11:24:52
59阅读
一、残差神经网络——ResNet的综述深度学习网络的深度对最后的分类和识别的效果有着很大的影响,所以正常想法就是能把网络设计的越深越好,但是事实上却不是这样,常规的网络的堆叠(plain network)在网络很深的时候,效果却越来越差了。其中原因之一即是网络越深,梯度消失的现象就越来越明显,网络的训练效果也不会很好。 但是现在浅层的网络(shallower network)又无法明显提
转载
2024-06-20 17:21:26
113阅读
tf.estimator总结Estimator 是 TensorFlow 中的高阶 API。它会处理 initialization、logging、saving、restoring 等细节,以便研究人员专注于模型。Estimator API 中有不少的内置 Estimator。当然,除了这些内置 Estimator,你可以自定义 Estimator。推荐在解决问题时将内置 Estimator 作为
前言 ResNet是一个比较成熟的深度学习分类模型,目前有ResNet-18、ResNet-34、ResNet-50、ResNet-101、ResNet-152,同时,该分类模型常用于RGB(三通道)彩色图像的分类任务,如在ImageNet的训练;而在单通道图像(灰度图像)的训练和测试较少。如何使ResNet在单通道图像上训练,如何修改网络模型参数和读取图像,本文将一一进行讲解。步骤第一步:构建数
转载
2024-04-23 12:05:38
62阅读