1. 前言   既然提到卷积神经网络了,我们就来说说它的特殊之处,首先这里的卷积神经网络一般假定输入就是图片数据,也正是因为输入是图片数据,我们可以利用它的像素结构特性,去做一些假设来简化神经网络的训练复杂度(减少训练参数个数)。2.卷积神经网总体结构一览输入层和输出层中间夹着数层隐藏层,每一层都由多个神经元组成,层和层之间是全连接的结构,同一层的神经元之间没有连接。 卷积神经网络是上
Linux培训教程 linux中nl命令使用介绍nl命令在linux系统中用来计算文件中行号。nl 可以将输出的文件内容自动的加上行号!其默认的结果与 cat -n 有点不太一样, nl 可以将行号做比较多的显示设计,包括位数与是否自动补齐 0 等等的功能。兄弟连linux培训小编介绍一下:linux中nl命令使用介绍
转载 2024-07-16 13:52:36
31阅读
=== 数组的维数与矩阵的维数需要区分开===1. 概述在机器学习过程中,我们会经常遇到向量、数组和矩阵这三种数据结构,下面就这三种数据结构做一次详细的分析。 同时我们时常困惑于维度,n维向量,n维数组,矩阵的维度,本文着重就这一方面进行分析。2. 向量、数组和矩阵2.1 向量在解析几何中,我们把“既有大小又有方向的量”叫做向量,并把可随意平行移动的有向线段作为向量的几何形象。在引进坐标系以后,这
转载 2024-02-14 21:33:56
30阅读
字符数据类型char数据类型  当需要固定长度时,使用char数据类型,此数据类型长度可以使1-2000字节.若是不指定大小默认占1字节,如果长度有空余时会以空格进行填充,如果大于设定长度数据库则会返回错误报告nchar数据类型  nchar,即国家字符集,使用方法和char相同.如果开发的项目需要国际化那么就选择nchar数据类型,nchar()和char()的区别在于nchar用来存储Unic
NCNN环境的搭建请参考:腾讯神经网络推
文章目录常用检测数据集一 CIFAR系列二 COCO三 VOC系列四 CIFAR10五、TT100K六 将图像数据集划分为训练集,验证集,测试集常用行为检测数据集UCF101 常用检测数据集一 CIFAR系列CIFAR10有6w张32*32的图片,一共有10个类别,每个类别6000张,5w张训练,1w张测试。数据集实际被分为6batches,5份训练,1份测试,每份均为1w张。测试集的1w张,是
主要任务:将mobileNet模型转换为ncnn模型 参考博客:           实现方法: 1、前提条件:下载并成功编译ncnn (主要参考github文档:https://github.com/Tencent/ncnn/wiki/how-to-build) install g++ cmake protobuf
转载 2024-08-22 11:43:47
143阅读
1、下载和编译ncnngit clone https://github.com/Tencent/ncnn cd ncnn mkdir build && cd build cmake .. #编译目录下的CMakeLists.txt 打开根目录下的CMakeLists.txt文件,定位到最后六行,修改如下: add_subdirectory(examples) # add_
转载 2023-07-10 22:12:35
272阅读
代码链接:本代码可以在模拟器下进行跑。环境:windows10Android studio 3.6Sdk:android10 api 29Ndk:r15cNcnn:20200226Linux下的代码测试:cd mtcnn_linux/build cmake .. make ./mtcnn如果可以跑通,输出正确结果,证明mtcnn代码的准确性。实际操作的时候,首先基于linux把c++代码调试通,方
github https://github.com/Tencent/ncnnncnn 是一个为手机端极致优化的高性能神经网络前
原创 2022-08-06 00:04:32
1128阅读
0.调用实例先看一个调用实例,顺着调用流程探寻ncnn内部具体实现细节。#include "net.h" int main(int argc, char **argv) { ncnn::Mat in; ncnn::Mat out; ncnn::Net net; net.load_param("model.param"); net.load_mo
转载 2024-03-19 20:28:41
179阅读
下面从几个方面介绍下自己的采坑之路:NCNN自带模型的benchmarkNCNN交叉编译到rk3288(armv7架构)和rk3399(armv8架构)的方法NCNN转换其他模型并加入benchmark中NCNN自带模型的benchmark1. 下载NCNNNCNN这类开源引擎都可以从github上下载下来,下载下来的整个文件夹就像一个完整的软件或者生态系统一样,之后的所有操作都会在这个文件夹里完
综述最近在研究ocr模型(包括文本检测和文本识别)在安卓端的部署,由于工作中用到的算法是基于百度研发的PPOCR算法,最终需要在安卓端落地应用,部署框架使用的是ncnn框架,中间涉及模型转换和部署的问题,所以特意在此做一个记录,本文主要讲一下模型部署的问题,关于模型转换的讲解详见我的另一篇文章:安卓端部署PPOCR的ncnn模型——模型转换说到模型部署,顾名思义,就是通过部署框架编写相关代码使模型
转载 2024-03-13 10:38:05
138阅读
编译版本,默认配置,android-ndk-r21d,cctools-port 895 + ld64-274.2 + ios 10.2 sdk libc++ncnn-android-lib 是 android 的静态库(armeabi-v7a + arm64-v8a + x86 + x86_64)ncnn-android-vulkan-lib 是 android 的静态库(armeabi-v7a
列表界面 取值工具类package nc.ui.pubapp.util; import nc.ui.pub.bill.BillItem; import nc.ui.pub.bill.BillListPanel; import nc.ui.pub.bill.BillModel; import nc.ui.pub.bill.IBillItem; import nc.vo.pub.lang.UFBoo
转载 2024-10-22 14:24:27
38阅读
源码结构benchmark:一些常见模型的模型文件,如mobilenet,resnet,vgg等。 cmake:有关链接openmp和valkan的cmake文件,这两个都是并行计算加速用的 docs:文档,包括开发指南,构建指南等等 examples:使用ncnn的示例,包括几个常用模型的cpp调用示例,及其cmakelist文件 images:此目录无关紧要,是页面上的图片 src:ncnn
目录一、下载yolov5源码和模型二、导出onnx模型三、配置ncnn并生成param和binncnn环境搭建:记住生成的param和bin的名字编辑param文件设置动态尺寸推理记住permute三个值然后用ncnn的ncnnoptimize工具优化一下param和bin:四、调整yolov5.cpp源码并重新编译ncnn得到最新的yolov5执行程序第一个改动(上边说到的第一个对应起来):&n
转载 2024-07-01 16:36:45
393阅读
ncnn git:https://github.com/Tencent/ncnnncnn 是一个为手机端极致优化的高性能神经网络前向计算框架。ncnn 从设计之初深刻考虑手机端的部署和使用。无第三方依赖,跨平台,手机端 cpu 的速度快于目前所有已知的开源框架。基于 ncnn,开发者能够将深度学习算法轻松移植到手机端高效执行,开发出人工智能 APP,将 AI 带到你的指尖。ncnn 目前已在腾讯多
转载 2024-06-05 07:16:22
215阅读
0.调用实例先看一个调用实例,顺着调用流程探寻ncnn内部具体实现细节。#include "net.h" int main(int argc, char **argv) { ncnn::Mat in; ncnn::Mat out; ncnn::Net net; net.load_param("model.param"); net.load_mo
转载 2024-07-02 07:27:54
159阅读
文章目录0. 前言1. ONNX1.1. 基本情况1.2. 部署工具概述1.3. ONNX文档阅读1.4. 其他小工具2. ONNX Runtime2.1. 基本情况2.2. 各种后端2.3. Python API 的基本使用 0. 前言最近要做一些模型推理优化的工作,所以要稍微多学习一点。ONNX其实一直都知道,统一的模型格式,使得模型在各个框架、平台间迁移更方便。 1.1. 基本情况ONN
  • 1
  • 2
  • 3
  • 4
  • 5