一个输入,一个输出的神经网络。只有两个可以训练的参数:w,b。没有中间层。不用pso的情况下#导入包 import torch import torch.nn as nn #数据 data = torch.tensor([[[1],[2]],[[2],[4]],[[3],[6]],[[4],[8]],[[5],[10]]],dtype=torch.float) #参数 epoches = 10
转载 2023-07-05 16:52:27
100阅读
       短期电力负荷预测是电力系统安全调度、经济运行的重要依据 , 随着电力系统的市场化 , 负荷预测的精度直接影响到电力系统运行的可靠性、经济性和供电质量。LSTM 为短期电力负荷预测提供了一个新的研究方向。本文将LSTM用于短期电力负荷预测 , 提出基于LSTM 的短期电力负荷预测模型 , 同时建立改进粒子群模型对 LSTM进行参数优化 , 并以浙
定义:粒子群中每个粒子的位置表示BP神经网络当前迭代中权值的集合,每个粒子的维数由网络中起连接作用的权值的数量和阈值个数决定,以给定训练样本集的神经网络输出误差作为神经网络训练问题的适应度函数,适应度值表示神经网络的误差,误差越小则表明粒子在搜索中具有更好的性能,粒子在权值空间内移动搜索使得网络输出层的误差最小,改变粒子的速度也就是更新网络权值,以减少均方误差。
在Octave以及Matlab上,仿真了使用粒子群PSO实现MPPT的过程。粒子数为4。太阳能电池为4个串联。2019年4月24日更新matlab代码。目录1.1 先绘制出PV曲线(Octave)1.2 PSO算法(Octave)2.1 绘制PV曲线(Matlab)2.2 PSO.m(Matlab)3 仿真结果  本文主要是代码。我的软件环境是winxp(32bit),Octave4.4
转载 2023-12-12 15:35:35
77阅读
# 粒子群优化BP神经网络MATLAB代码实现 ## 1. 简介 粒子群优化(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,通过模拟鸟群捕食中的协同行为,来寻找最优解。BP神经网络是一种常用的监督学习算法,用于解决分类和回归问题。在本文中,我们将介绍如何利用粒子群优化算法来优化BP神经网络,并给出MATLAB代码实现。 ## 2. 实现步骤
原创 2023-09-08 06:32:10
120阅读
⭐️ 前言——盲目搜索和启发式搜索? 盲目搜索:按照预定的策略实行搜索,在搜索过程中获取的中间信息不用来改进策略,如枚举法、蒙特卡罗算法? 启发式搜索:一个基于直观或经验构造的算法,在可接受的花费(比如计算的空间和时间)下给出待解决优化问题的一个可行解,相比于盲目搜索,启发式搜索利用了中间息来改进搜索策略⭐️ 粒子群算法的介绍? 基本信息介绍粒子群算法,其全称为粒子群优化算法(Particle S
# 粒子群优化 BP 神经网络实现流程 ## 1. 简介 在开始介绍实现过程之前,我们先来了解一下粒子群优化(Particle Swarm Optimization,PSO)和 BP 神经网络。 - 粒子群优化是一种基于群体智能的优化算法,通过模拟鸟群或鱼群等自然现象中的行为规律,寻找最优解。 - BP 神经网络是一种前向反馈的人工神经网络,通过训练过程来调整网络的权重和偏置,以实现输入输出
原创 2023-07-28 04:35:01
282阅读
1.项目背景PSO是粒子群优化算法(Particle Swarm Optimization)的英文缩写,是一种基于种群的随机优化技术,由Eberhart和Kennedy于1995年提出。粒子群算法模仿昆虫、兽群、鸟群和鱼群等的群集行为,这些群体按照一种合作的方式寻找食物,群体中的每个成员通过学习它自身的经验和其他成员的经验来不断改变其搜索模式。本项目通过PSO粒子群优化卷积神经网络CNN算法来构建
机器学习是现阶段比较热门的一门学科,他在图像处理、数据拟合、人工智能方面有着很深的造诣。粒子群算法通过设计一种无质量的粒子来模拟鸟群中的鸟,粒子仅具有两个属性:速度和位置,速度代表移动的快慢,位置代表移动的方向。每个粒子在搜索空间中单独的搜寻最优解,并将其记为当前个体极值,并将个体极值与整个粒子群里的其他粒子共享,找到最优的那个个体极值作为整个粒子群的当前全局最优解,粒子群中的所有粒子根据自己找到
1、摘要本文主要讲解:PSO粒子群优化-BP神经网络-优化神经网络神经元个数dropout和batch_size,目标为对数据进行分类模型 主要思路:PSO Parameters :粒子数量、搜索维度、所有粒子的位置和速度、个体经历的最佳位置和全局最佳位置、每个个体的历史最佳适应值 2.BP神经网络 Parameters 神经网络第一层神经元个数、神经网络第二层神经元个数、dropout比率、ba
粒子群优化(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,通过模拟群体行为来解决优化问题。它最初由Kennedy和Eberhart于1995年提出,受到生物群体行为的启发,例如鸟群、鱼群等。粒子群优化算法通过模拟粒子的位置和速度来搜索最优解。在每一次迭代中,每个粒子都会根据自己当前的位置和速度,以及群体中最优解的位置,更新自己的速度和位置。这样,整个
偶然看到自动驾驶的四项关键技术:环境感知,行为决策,路径规划和运动控制。然后看到用了粒子群优化算法。粒子群优化算法听了很多,但是没有真正研究过,今天稍微看了下,心得如下。【What】通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法。鸟群觅食现象 粒子群优化算法鸟群 搜索空间的一组有效解觅食空间 问题的搜索空间飞行速度类比解的速度向量所在位置 解
1.算法概述PSO是粒子群优化算法(——Particle Swarm Optimization)的英文缩写,是一种基于种群的随机优化技术,由Eberhart和Kennedy于1995年提出。粒子群算法模仿昆虫、兽群、鸟群和鱼群等的群集行为,这些群体按照一种合作的方式寻找食物,群体中的每个成员通过学习它自身的经验和其他成员的经验来不断改变其搜索模式。   PSO算法是一种随机的、
转载 2023-09-04 20:29:16
76阅读
    大自然是我们的老师,生物的进化过程、群体智能活动为我们设计一个又一个优化算法提供了灵感的源泉。粒子群优化算法(PSO)就是仿生算法的一个著名代表。它是一种群体智能的随机搜索算法。            粒子群算法的两个重要公式分别是速度更新公式和位置更新公式。每个粒子在进化的过程中需要维护两个向量,一个是速度向
一、简介 粒子群优化(PSO)是一种基于群体智能的数值优化算法,由社会心理学家James Kennedy和电气工程师Russell Eberhart于1995年提出。自PSO诞生以来,它在许多方面都得到了改进,这一部分将介绍基本的粒子群优化算法原理和过程。1.1 粒子群优化粒子群优化(PSO)是一种群智能算法,其灵感来自于鸟类的群集或鱼群学习,用于解决许多科学和工程领域中出现的非线性、非凸性或组
原创 2021-07-09 15:13:28
2374阅读
3评论
1、摘要本文主要讲解:PSO粒子群优化-CNN-优化神经网络神经元个数dropout和batch_size,目标为对沪深300价格进行预测 主要思路:PSO Parameters :粒子数量、搜索维度、所有粒子的位置和速度、个体经历的最佳位置和全局最佳位置、每个个体的历史最佳适应值CNN Parameters 神经网络第一层神经元个数、神经网络第二层神经元个数、dropout比率、batch_si
文章目录前言优化问题粒子群算法PSOpso的代码适应度函数GW函数GW函数运行主函数参考文献thinkings 前言1995年被提出,源于对鸟群扑食的行为研究。 许多问题最终被归结于优化问题。为了解决各种各样的优化问题,人们提出了许多优化算法,例如爬山法、遗传算法、神经网络算法等。优化问题1.寻找全局最优点。 2.要有较高的收敛速度。粒子群算法PSO在这里,每个优化问题的解都是搜寻空间中的一只鸟
       光伏电池作为太阳能发电的核心部件,实现了太阳能到电能的转换,但是由于光伏电池器件本身的复杂性以及现如今光电材料的限制,光伏电池的转换效率总体来说还是比较低,而且其输出还是非线性的,并且光照强度和外界温度对其输出的影响也很大,这使得其本就不高的转化率进一步降低了。所以现如今对光伏电池输出特性的研究已经成为了光伏发电产业一大重要课题,为了充分利用光
粒子群算法PSO1. 粒子群算法2. 算法流程2.1 公式解读2.2 初始化2.3 计算流程2.4 示例 1. 粒子群算法粒子群算法(Particle Swarm Optimization)是一种优化算法,其主要思想受到自然界鸟群飞行的启发。 对一群鸟群来说,其群体觅食行为呈现一定规律:单只鸟并不知道食物地在哪里,但可以通过飞行中对食物的远离程度来纠正自己的飞行。体现在单只鸟上可能并不明显,但当
目录1粒子群算法简介2算法原理3迭代公式4算法流程5实例计算6代码实现6.1 基于numpy6.2 基于sko.pso 1粒子群算法简介粒子群算法(Particle Swarm Optimization,简称PSO)是1995年Eberhart博士和Kennedy博士一起提出的。粒子群算法是通过模拟鸟群捕食行为设计的一种群智能算法。区域内有大大小小不同的食物源,鸟群的任务是找到最大的食物源(全局
  • 1
  • 2
  • 3
  • 4
  • 5