建模方法pdf已上传帧差法 由于场景中的目标在运动,目标的影像在不同图像帧中的位置不同。 时间上连续的两帧图像进行差分运算,不同帧对应的像素点相减,判断灰度差的绝对值,当绝对值超过一定阈值时,即可判断为运动目标,从而实现目标的检
转载
2024-05-29 00:56:19
56阅读
据上次博客已经2周多了,一直没写,惭愧。一、高斯模型简介 首先介绍一下单高斯模型(GSM)和高斯混合模型(GMM)的大概思想。1.单高斯模型μ、σ完全决定等等,在许多领域得到广泛应用。在这里简单介绍下高斯分布的概率密度分布函数: θ=(μ,σ2);2.高斯混合模型 &nbs
转载
2024-05-05 21:54:19
47阅读
导语:现有的高斯模型有单高斯模型(SGM)和高斯混合模型(GMM)两种。从几何上讲,单高斯分布模型在二维空间上近似于椭圆,在三维空间上近似于椭球。在很多情况下,属于同一类别的样本点并不满足“椭圆”分布的特性,所以我们需要引入混合高斯模型来解决这种情况。1 单高斯模型多维变量X服从高斯分布时,它的概率密度函数PDF定义如下:在上述定义中,x是维数为D的样本向量,mu是模型期望,sigma是模型协方
转载
2023-12-21 09:40:59
70阅读
高斯混合模型(Gaussian Mixture Model)首先看一个图直观理解:包含三个高斯分量的一个维度的GMM是如何由其高斯分量叠加而成基本原理: ==》混合模型+高斯模型 组成1.混合模型(MIxture Model) 混合模型是一个可以用来表示在总体分布(distribution)中含有 K 个子分布的概率模型,换句话说,混合模型表示了观测数据在总体中的概率分布,它是一个由 K 个子分布
转载
2023-12-01 12:10:41
176阅读
作者:桂。前言本文是曲线拟合与分布拟合系列的一部分,主要总结混合高斯模型(Gaussian Mixture Model,GMM),GMM主要基于EM算法(前文已经推导),本文主要包括: 1)GMM背景介绍; 2)GMM理论推导; 3)GMM代码实现;内容多有借鉴他人,最后一并给出链接。 一、GMM背景 A-高斯模型1给出单个随机信号(均值为-2,方差为9的高斯分布),可以利用最大
1.高斯混合模型概述高斯密度函数估计是一种参数化模型。高斯混合模型(Gaussian Mixture Model, GMM)是单一高斯概率密度函数的延伸,GMM能够平滑地近似任意形状的密度分布。高斯混合模型种类有单高斯模型(Single Gaussian Model, SGM)和高斯混合模型(Gaussian Mixture Model, GMM)两类。类似于聚类,根据高斯概率密度函数(Proba
转载
2024-03-11 11:30:20
159阅读
一个例子高斯混合模型(Gaussian Mixed Model)指的是多个高斯分布函数的线性组合,理论上GMM可以拟合出任意类型的分布,通常用于解决同一集合下的数据包含多个不同的分布的情况(或者是同一类分布但参数不一样,或者是不同类型的分布,比如正态分布和伯努利分布)。如图1,图中的点在我们看来明显分成两个聚类。这两个聚类中的点分别通过两个不同的正态分布随机生成而来。但是如果没有GMM,那么只能用
转载
2024-03-21 19:44:08
122阅读
高斯混合模型 (GMM)高斯混合模型是概率模型,其假设所有样本是从具有未知参数的有限数量的高斯分布的混合生成的。它属于软群集算法组,其中每个数据点都属于数据集中存在的每个群集,但每个群集的成员资格级别不同。此成员资格被指定为属于某个群集的概率,范围从0到1。例如,突出显示的点将同时属于集群A和B,但由于其与它的接近程度而具有更高的集群A的成员资格。 GMM假设每个聚类遵循概率分布,可以
转载
2024-04-09 13:15:34
37阅读
《Python数据科学手册》笔记一、高斯混合模型(GMM)的由来k-means要求这些簇的模型必须是圆形,k-算法没有内置的方法来实现椭圆形的簇。因此,拟合非圆形的分类数据时,效果不好。如图1和图2。  
转载
2024-03-27 12:28:15
77阅读
参考url:https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html1、高斯混合模型(GMM)为什么会出现:k-means算法的缺陷 某些点的归属簇比其他点的归属簇更加明确,比如中间的两个簇似乎有一小块区域重合,因此对重合部分的点将被分配到哪个簇不是很有
转载
2023-07-31 23:48:51
276阅读
高斯混合模型GMM是一个非常基础并且应用很广的模型。对于它的透彻理解非常重要。网上的关于GMM的大多资料介绍都是大段公式,而且符号表述不太清楚,或者文笔非常生硬。本文尝试用通俗的语言全面介绍一下GMM,不足之处还望各位指正。首先给出GMM的定义这里引用李航老师《统计学习方法》上的定义,如下图:定义很好理解,高斯混合模型是一种混合模型,混合的基本分布是高斯分布而已。第一个细节:为什么系数之和为0?P
转载
2024-05-11 10:04:57
92阅读
华电北风吹 日期:2016-05-07高斯混合模型属于EM框架的经典应用,不懂EM的先看参考博客一。具体重复的地方本文不重复讲。高斯混合模型是一个无监督学习的密度估计算法,主要用思路是利用EM算法对混合高斯分布进行极大似然估计。 模型缺点:高斯核个数实现难以确定,EM算法的初始值敏感,局部最优等。一、高斯混合分布 对于有k个高斯分布混合而成的混合高斯分布的概率密度函数有 p(x)=∑zp(x
转载
2023-10-29 19:08:20
98阅读
混合高斯模型深入理解和分析 1.高斯模型假设的原理 我们认为物体上的每一个像素点它的亮度值是一个随机变量,这个随机变量服从高斯分布,可以定性的分析一下,每个像素点都有一个自生本来的像素值,比如背景的亮度,有一个自己本来的值,可以认为是均值,当太阳光强了一点,这个值就会比均值大一些,当太阳被云彩遮住了,他的亮度又比均值小了写,可见是在均值的附近波动,但是他每次像素值的变化程度我们可以用一个方差来表
转载
2024-04-29 12:19:30
86阅读
高斯混合模型的终极理解 高斯混合模型GMM是一个非常基础并且应用很广的模型。对于它的透彻理解非常重要。网上的关于GMM的大多资料介绍都是大段公式,而且符号表述不太清楚,或者文笔非常生硬。本文尝试用通俗的语言全面介绍一下GMM,不足之处还望各位指正。首先给出GMM的定义这里引用李航老师《统计学习方法》上的定义,如下图:定义很好理解,高斯混合模型是一种混合模型,混合的基本分布是高斯分布而已。第一个细节
转载
2024-02-09 15:32:42
100阅读
上一次我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussian Mixture Model (GMM)。事实上,GMM 和 k-means 很像,不过 GMM 是学习出一些概率密度函数来(所以 GMM 除了用在 clustering 上之外,还经常被用于 density estimation ),简单地说,k-means 的结果是每个数据点被 assign
01. 高斯混合模型简介高斯混合模型(Gaussian Mixed Model,GMM)和隐马尔可夫模型(Hidden Markov Model, HMM)是语音算法中常用的统计模型。HMM前面已经讲过了,这里介绍一下GMM算法。当数据分布中有多个峰值的时候,如果使用单峰分布函数去拟合会导致结果不佳,这时候可以使用具有多个峰值的分布去拟合,如下图所示,可以明显的看到使用两个峰值的高斯模
转载
2024-04-17 15:21:40
144阅读
文章目录1.高斯混合模型GMM的定义1.1高斯混合模型GMM的几何表示1.2高斯混合模型GMM的模型表示2.高斯混合模型的极大似然估计2.1 数据样本的定义3.高斯混合模型GMM(EM期望最大算法求解)3.1 EM算法(E-Step)3.2 EM算法(E-Step-高斯混合模型代入)3.2 EM算法(M-Step) 1.高斯混合模型GMM的定义高斯混合模型中的高斯就是指的是高斯分布,顾名思义,就
转载
2024-03-16 10:26:27
222阅读
最近看一些计算机视觉和图形学类的文章,经常发现一个被称为Gaussian mixture model(GMM)的技术,应用在图像图形处理的算法中。出于好奇,我最近阅读了GMM的文献[1]。基于该文献,我将在这篇博客介绍一下GMM的一些核心思想以及比较成功的应用。1. 简介GMM是一个参数概率密度函数,由加权的分块高斯密度累加和表示。GMM通常被用来表示一个概率密度分布的参数模型,以提供建立特征度量
转载
2023-08-18 17:49:55
161阅读
(GMM)(EM算法)(EM算法) 一、前言 高斯混合模型(Gaussian Mixture Model)简称GMM,是一种业界广泛使用的聚类算法。它是多个高斯分布函数的线性组合,理论上GMM可以拟合出任意类型的分布,通常用于解决同一集合下的数据包含多种不同的分布的情况。高斯混合模型使用了期望最大(Expectation Maxi
转载
2024-01-15 17:23:15
189阅读
使用单高斯模型来建模有一些限制,例如,它一定只有一个众数,它一定对称的。举个例子,如果我们对下面的分布建立单高斯模型,会得到显然相差很多的模型:
于是,我们引入混合高斯模型(Gaussian Mixture Model,GMM)。高斯混合模型就是多个单高斯模型的和。它的表达能力十分强,任何分布都可以用GMM来表示。例如,在下面这个图中,彩色的线表示一个一个的单高斯模型,黑色的线是它们的和,一
转载
2019-08-23 21:59:00
351阅读
2评论