导读: 验证码作为网络安全的第一道屏障,其重要程度不言而喻。当前,卷积神经网络的高速发展使得许多验证码的安全性大大降低,一些新型验证码甚至选择牺牲可用性从而保证安全性。针对对抗样本技术的研究,给验证码领域带来了新的契机,并已应用于验证码反识别当中,为这场旷日持久攻防对抗注入了新的活力。分享内容包括三大方面:对抗样本介绍极验对抗样本技术探索与应用后续的工作与思考
--01 对抗样本介绍1. 什么是对
转载
2024-05-21 15:34:25
94阅读
生成式对抗网络GANGenerative Adversarial Nets, 生成式对抗网络生成模型生成式对抗网络(GAN)的目的是训练这样一个生成模型,生成我们想要的数据GAN框架判别器(Discriminator):区分真实(real)样本和虚假(fake)样本。对于真实样本,尽可能给
出高的评分1;对于虚假数据,尽可能给出低个评分0生成器(Generator):欺骗判别器。生成虚假数据,使得
转载
2023-08-08 14:19:45
315阅读
视频学习1. GAN(生成式对抗网络)GAN的框架GAN的工作原理由判别器和生成器组成判别器(Discriminator):区分真实(real)样本和虚假(fake)样本。对于真实样本,尽可能给出高的评分1;对于虚假数据,尽可能给出低的评分0生成器(Generator):欺骗判别器。生成虚假数据,使得判别器D能够尽可能给出高的评分1生成器和判器存在着对抗的关系,通过不断的对抗使最终结果无限接近我们
转载
2024-02-05 11:31:40
78阅读
【导读】生成式对抗网络(Generative Adversarial Networks,GANs)作为近年来的研究热点之一,受到了广泛关注,每年在机器学习、计算机视觉、自然语言处理、语音识别等上大量相关论文发表。密歇根大学Jie Gui博士等人近期发布了《A Review on Generative Adversarial Networks: Algorithms, Theory, and App
目录论文主要内容DeepFool算法原理二分类问题非线性问题多分类问题实验结果 论文主要内容提出了一种新的计算对抗样本的方法:DeepFool算法通过实验,验证了DeepFool算法所添加的扰动更小,同时计算对抗样本所消耗的时间也更少实验也说明了,如果使用不恰当的算法(如FGSM算法)来验证分类器的鲁棒性,那么可能会对分类器的鲁棒性(Robustness)评估过高。DeepFool算法原理De
转载
2024-01-12 19:42:05
54阅读
生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。论文《Generative Adversarial Nets》首次提出GAN。 GAN的思想 GAN由生成器G和判别器D组成。生成器G根据输入先验分布的随机向量(一般使用随机分布,论文
转载
2024-05-09 16:13:45
430阅读
0 前言GAN(Generative Adversarial Nets)是用对抗方法来生成数据的一种模型。和其他机器学习模型相比,GAN引人注目的地方在于给机器学习引入了对抗这一理念。回溯地球生物的进化路线就会发现,万物都是在不停的和其他事物对抗中成长和发展的。 生成对抗网络就像我们玩格斗游戏一样:学习过程就是不断找其他对手对抗,在对抗中积累经验,提升自己的技能。GAN 是生成模型的一
转载
2024-05-23 20:25:12
100阅读
生成式对抗网络(Generative Adversarial Networks,GAN)主要通过模型中两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出判别模型的任务就是判断一个实例是真实的还是由模型生成的;生成模型的任务就是生成一个实例来骗过判别模型,两个模型相互对抗,最后会达到一个平衡,即生成模型生成的实例
转载
2024-03-16 16:56:08
48阅读
1. 生成(Generator)模型通过学习一些数据,然后生成类似的数据。 比如让模型学习很多动物图片,最终计算机就可以自行生成动物图片了 训练完成后,即使没有NN Encoder,输入一段Code,也可以使用NN Decoder生成相关图片但是,现有的评价方式,比如计算生成图片与标准图片逐像素的平方距离,无法有效地判断2. GAN (Generative Adversarial Network
转载
2024-03-22 15:56:20
51阅读
论文参考: Deep Generative Filter for motion deblurring 论文解读完整工程代码下载: 1. 图像大小 256×256 。训练时候把清晰图像和模糊图像合成在一张图上,左侧是清晰图像,右侧是模糊图像。 2. 根据训练和测试图片生成 HDF5格式 文件HDF(Hierarchical Data Format)可以存储不同类型的图像和数码数
转载
2024-08-12 17:14:55
83阅读
GAN介绍理解GAN的直观方法是从博弈论的角度来理解它。GAN由两个参与者组成,即一个生成器和一个判别器,它们都试图击败对方。生成备从分巾中狄取一些随机噪声,并试图从中生成一些类似于输出的分布。生成器总是试图创建与真实分布没有区别的分布。也就是说,伪造的输出看起来应该是真实的图像。 然而,如果没有显式训练或标注,那么生成器将无法判别真实的图像,并且其唯一的来源就是随机浮点数的张量。之后,GAN将在
转载
2024-02-21 12:43:41
93阅读
同步自我的知乎专栏:https://zhuanlan.zhihu.com/p/26122612上篇文章 瞎谈CNN:通过优化求解输入图像 - 知乎专栏 中提到过对抗样本,这篇算是针对对抗样本的一个小小扩充:用Fast Gradient Sign方法在Caffe中生成对抗样本。本文代码的完整例子可以在下面地址下载:frombeijingwithlove/dlcv_for_begi
1.GAN的基本原理其实非常简单,这里以生成图片为例进行说明。假设我们有两个网络,G(Generator)和D(Discriminator)。正如它的名字所暗示的那样,它们的功能分别是:G是一个生成图片的网络,它接收一个随机的噪声z,通过这个噪声生成图片,记做G(z)。D是一个判别网络,判别一张图片是不是“真实的”。它的输入参数是x,x代表一张图片,输出D(x)代表x为真实图片的概率,如果为1,就
转载
2023-12-26 17:36:47
131阅读
GAN的概念对抗训练如何训练生成器:如果图像通过了鉴别器的检验,我们奖励生成器;如果伪造的图像被识破,我们惩罚生成器。随着训练的进展,鉴别器的表现越来越好,生成器也必须不断进步,才能骗过更好的鉴别器。最终,生成器也变得非常出色,可以生成足以以假乱真的图像。这种架构叫做生成对抗网络(Generative Adversarial Network, GAN)。它利用竞争来驱动进步,并且,我们不需要定义具
转载
2024-01-04 05:56:54
98阅读
1 Box-constrained L-BFGSSzegedy[22] 等人首次证明了可以通过对图像添加小量的人类察觉不到的扰动误导神经网络做出误分类。他们首先尝试求解让神经网络做出误分类的最小扰动的方程。表示一张干净的图片,是一个小的扰动,l是图像的label,C(`)是深度申请网络分类器。l和原本图像的label不一样。 但由于问题的复杂度太高,他们转而求解简化后的问题,即寻找最小的
本篇博客简单介绍了生成对抗网络(Generative Adversarial Networks,GAN),并基于Keras实现深度卷积生成对抗网络(DCGAN)。以往的生成模型都是预先假设生成样本服从某一分布族,然后用深度网络学习分布族的参数,最后从学习到的分布中采样生成新的样本。例如变分自编码器就是构建生成样本的密度函数,这种模型称为显示密度模型。 GAN并不学习密度函数,而是基于随机噪声,通过
转载
2024-08-12 17:14:29
65阅读
本篇主要介绍了DCGAN,BigGAN,WGAN,WGAN-GP。繁琐的公式推导并没有呈现,直接给出结论,简单易懂。目录DCGAN:BigGAN:WGAN:WGAN-GP:DCGAN:我们之前使用的实战代码实际上就是DCGAN。GAN基于全连接层实现生成器G和判别器D网络,图片维度高,因此网络参数量巨大,训练效果并不是特别好。而DCGAN提出使用转置卷积来将噪声放大,获取生成图片,因此使用转置卷积
转载
2024-04-18 13:06:42
39阅读
文章目录什么是GAN(生成对抗网络)GAN的优化鉴别器的优化生成器的优化公式角度理解什么是"对抗"GAN的训练 什么是GAN(生成对抗网络)GAN分为生成器与鉴别器两部分,生成器将隐空间中的点作为输入,生成一张假图片。鉴别器会将真图片与假图片作为输入,鉴别出哪一张图片为真。“对抗”即生成器与鉴别器之间的对抗,生成器企图利用生成的假图片欺骗鉴别器,鉴别器会依据生成的假图片与真图片的差距给生成器施加
转载
2024-03-27 12:35:23
50阅读
GAN生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络最最直接的应用是数据的生成,而数据质量的好坏则是评判GAN成功与否的关键。针对数据量缺乏的场景,生成模型则可以帮助生成数据,提高数据数量,从而利用半监督学习提升学习效率。GAN受博弈论中的零和博弈启发,将数据(以图片为例)的生成问题视作判别器和生成器这两个网
转载
2024-03-30 17:09:49
55阅读
GANsGoodfellow和Bengio等人发表在NIPS 2014年的文章Generative Adversarial Network是生成对抗网络的开创文章,论文思想启发自博弈论中的二人零和博弈。在二人零和博弈中,两位博弈放的利益之和为零或一个常数,即一方有所得,另一方必有所失。GAN模型中的两位博弈方分别由生成式模型(Generative model)和判别式模型(discriminati
转载
2024-05-11 10:33:15
204阅读