一、Global Context Network (GCNet)论文地址:https://arxiv.org/search/?query=GCNet&searchtype=all&source=header 代码地址:https://github.com/xvjiarui/GCNet 为了捕获长距离依赖关系,产生了两类方法: 采用自注意力机制来建模query对的关系。 对query
框架优点缺点TensorFlow- 由Google开发和维护,社区庞大,学习资源丰富- 具备优秀的性能表现,支持大规模分布式计算- 支持多种编程语言接口,易于使用- 提供了可视化工具TensorBoard,可用于调试和可视化模型- 底层架构复杂,操作较为繁琐- 不支持动态图,调试和修改模型较为困难- 对于一些高级算法实现,需要自己手动编写代码PyTorch- 由Facebook开发和维护,在学术界
深度学习入门-卷积神将网络(CNN)整体结构 CNN与之前的神将网络不同的是,CNN中新出现了卷积(Convolution)和池化(Pooling)。 之前介绍的神经网络中,相邻的所有神经元之间都有连接,这称为 连接(fully-connected)。另外,我们用Affine实现了连接。如下图所示。 CNN的结构如下: CNN 中新增了 Convolution 和 Pooli
转载 2024-03-11 10:32:32
349阅读
概述之前的博客中,笔者都曾提到attention机制。这种考虑全局,关注重点的机制在深度学习中很常见,尤其是self-attention将自然语言处理带到一个新高度。attention增加了深度学习的可解释性,并且应用广泛,在自然语言处理,计算机视觉,推荐系统中到处可见。它克服了循环神经网络解决过长序列时的问题,并且也可以像卷积神经网络那样能够并行计算。本文就列举几个比较经典的attention模
文章目录1. 连接2. SoftMax算法 1. 连接连接,指的是每一个结点都与上一的所有结点相连,用来把前面几层提取到的特征综合起来。举个例子,前面通过卷积和池化提取出来的特征有眼睛鼻子和嘴巴,那我们能单独通过这三个特征来判断出这是一只猫吗?显然不能,因为拥有眼睛鼻子嘴巴这三个特征的动物太多了吧,所以我们需要对这三个特征进行特征融合,从而最终判断出这个东东是一只猫猫而不是修狗。
学习笔记|Pytorch使用教程36本学习笔记主要摘自“深度之眼”,做一个总结,方便查阅。 使用Pytorch版本为1.2循环神经网络(RNN) 是什么?RNN如处理成不定长输入?训练RNN实现人名分类总结一.循环神经网络(RNN) 是什么?RNN :循环神经网络处理不定长输入的模型常用于NLP及时间序列任务(输入 数据具有前后关系)网络结构 xt:时刻t的输入,shape = (1, 57) s
转载 2024-02-10 01:48:37
58阅读
正文部分系《解析卷积神经网络——深度学习实践手册》基础理论篇部分小结部分将前述的基础理论篇的讲解附上,以便大家参考1连接如果说卷积、汇合和激活函数等操作是将原始数据映射到隐特征空间的话,连接则起到将学到的特征表示映射到样本的标记空间的作用。在实际使用中,连接可由卷积操作实现:对前连接连接可以转化为卷积核为1 × 1 的卷积;而前是卷积连接可以转化为卷积核为
神经网络是由若干个网络堆叠而成的模型。多层感知机作为最简单的神经网络,其核心组成的网络连接和激活函数连接是对输入神经元的线性变换。激活函数能够在神经网络中引入非线性成分,是神经网络强大表示能力的基础。下图是一个简单的神经网络示例,其中最左边是输入(input layer),中间两是隐含(hidden layer),最右边是输出(output layer)。第1关:实现
  之前的博文中已经将卷积、下采样进行了分析,在这篇博文中我们对最后一个顶层层结构fully_connected_layer类(连接)进行分析:  一、卷积神经网路中的连接  在卷积神经网络中连接层位于网络模型的最后部分,负责对网络最终输出的特征进行分类预测,得出分类结果:  LeNet-5模型中的连接分为连接和高斯连接,该的最终输出结果即为预测标签,例如这里我们需要对MNI
转载 2024-07-29 21:23:11
78阅读
+ b) $h_0 = rel
原创 2021-04-15 18:36:29
357阅读
目录OutlineRecapNeural NetworkHere comes Deep LearningHerosFully connected layerMulti-Layers Outline Matmul Neural Network Deep Learning Multi-Layer Rec
转载 2020-12-11 22:53:00
293阅读
2评论
刘二大人 PyTorch深度学习实践 笔记 P10 卷积神经网络(基础篇)1、基本概念2、卷积I 卷积运算过程II paddingIII stride=2 步长为2,有效降低图像的W HIV 下采样 max pooling layer 最大池化,没有w,2 * 2的max pooling,默认stride=2V 运算迁移到GPU3、一个简单的卷积神经网络示例:利用卷积神经网络来处理Minist
C++非常差,整理下来三个目的:第一搞懂caffe原理,第二在这个过程中会学C++,整理下来,便于回头梳理,第三和志轩的那个约定。第四努力当一个不被志轩抛弃的菜逼。- Inner_Product Layer.hpp先看Inner_Product Layer.hpp:template <typename Dtype> class InnerProductLayer : public
文章目录卷积池化连接Stride 卷积层数计算 在下图中左侧是一个32x32x3的图像,其中3代表RGB。每个卷积核是5x5x3,每个卷积核生成一个特征图(feature map)。下图里面有6个5x5x3的卷积核,所以输出6个特征图,大小为28x28x6. 下图中,第二到第三,其中每个卷积核大小为5x5x6,这里的6就是28x28x6中的6,两者需要相同,即每个卷积核的“层数”需要与
使用连接神经网络我们接下来就是要预测类似下面的图片中的数字是多少导入之后会用到的模块import torch from torchvision import transforms, datasets from torch.utils.data import DataLoader import torch.nn.functional as F import torch.optim as optim
转载 2024-10-13 22:37:49
72阅读
一、连接神经网络介绍连接神经网络是一种最基本的神经网络结构,英文为Full Connection,所以一般简称FC。FC的神经网络中除输入之外的每个节点都和上一的所有节点有连接。例如下面这个网络结构就是典型的连接: 神经网络的第一为输入,最后一为输出,中间所有的都为隐藏。在计算神经网络层数的时候,一般不把输入算做在内,所以上面这个神经网络为2。其中输入有3个神经元,隐
转载 2023-09-05 16:23:57
1646阅读
一:简述 二:使用pd.concat()级联 三: 使用pd.merge()合并 四: 案例分析:美国各州人口数据分析 一:简述pandas的拼接分为两种:级联:pd.concat, pd.append合并:pd.merge, pd.join1. 使用pd.concat()级联 pandas使用pd.concat函数,与np.concatenate函数
转载 2023-10-18 18:07:50
232阅读
1.网络结构 根据卷积核大小和卷积层数,VGG共有6中配置,分别为A,A-LRN,B,C,D,E,其中D和E两种最为常用,即i我们所说的VGG16和VGG19。看下图红色框所示。具体为:卷积-卷积-池化-卷积-卷积-池化-卷积-卷积-卷积-池化-卷积-卷积-卷积-池化-卷积-卷积-卷积-池化-连接-连接-连接 。通道数分别为64,128,512,512,512,4096,4096,1000
转载 2024-05-01 15:03:30
46阅读
1、连接(Fully Connected Layer) 数据经过激活函数(Activation Function),假设我们经过一个Relu之后的输出如下Relu: 然后开始到达连接。 以上图为例,我们仔细看上图连接的结构,连接中的每一是由许多神经元组成的(1x 4096)的平铺结构,上图不明显,我们看下图 而如果有两或以上fully connected layer就可以很好地
关于激活函数: Relu优点: Relu函数速度块:无需计算sigmoid中的指数倒数,relu函数就是max(0, x),计算代价小减轻梯度消失:在神经网络反向传播时,sigmoid函数求梯度之后会逐渐变小,而Relu函数的梯度是一,会减小梯度消失。稀疏性:可以看到,Relu在输入小于零时,输出也为零,这意味着函数不激活,从而更加稀疏。 连接(Fully conected conection
  • 1
  • 2
  • 3
  • 4
  • 5