简介 NaïveBayes算法,又叫朴素贝叶斯算法,朴素:特征条件独立;贝叶斯:基于贝叶斯定理。属于监督学习的生成模型,实现简单,没有迭代,并有坚实的数学理论(即贝叶斯定理)作为支撑。在大量样本下会有较好的表现,不适用于输入向量的特征条件有关联的场景。基本思想 (1)病人分类的例子 某个医院早上收了六个门诊病人,如下表:症状 职业 疾病 ——————————————————&nb
转载
2023-12-13 09:30:28
35阅读
朴素贝叶斯朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法。在机器学习分类算法中,朴素贝叶斯和其他绝多大的分类算法都不同,比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数,要么是条件分布。但是朴素贝叶斯却是生成方法,这种算法简单,也易于实现。1.基本概念朴素贝叶斯:贝叶斯分类是一类分类算法的总称,这类算
转载
2024-01-16 14:31:52
182阅读
目录一、什么是朴素贝叶斯分类方法原理举例二、概率基础三、文章分类计算四、拉普拉斯平滑系数五、API六、总结 一、什么是朴素贝叶斯分类方法原理朴素 即假设各样本之间相互独立贝叶斯 就是概率中的贝叶斯公式朴素贝叶斯分类 是对相对独立的样本间,根据特征以及类别计算相应的后验概率,所有可能的分类中概率最高的即为预测的结果。举例 上图为某垃圾广告分类,通过观察可以发现产品类所占比例最大,即将其预测为产品类
转载
2023-12-20 09:03:44
85阅读
机器学习实战(Machine Learning in Action)学习笔记————04.朴素贝叶斯分类(bayes)关键字:朴素贝叶斯、python、源码解析作者:米仓山下时间:2018-10-25机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/mac
转载
2023-11-16 11:51:11
74阅读
1 from numpy import zeros,array
2 from math import log
3
4 def loadDataSet():
5 #词条切分后的文档集合,列表每一行代表一个email
6 postingList=[['your','mobile','number','is','award','bon
转载
2023-12-26 10:36:22
87阅读
一、概述 贝叶斯算法是一系列分类算法的总称,这类算法均是以贝叶斯定理为基础,所以将之统称为贝叶斯分类。而朴素贝叶斯(Naive Bayesian)是其中应用最为广泛的分类算法之一。 朴素贝叶斯分类器是基于一个简单的假定:给定目标值时属性之间相互条件独立。二、核心思想 用p1(x, y)表示数据点(x, y)输入类别1的概率,用p2(x, y)表示数据点(x, y
转载
2023-12-17 11:26:17
127阅读
之前有次考试考的是手工计算朴素贝叶斯的分类。当时没答对,后来搞明白了,不久又忘得差不多了。所以写个例子在这儿记一下。先推导一下贝叶斯公式:假定我们观察到两个事件都发生了,记做P(AB),那么我们既可以认为先发生了事件A,在此基础上又发生了事件B,也可以认为先发生了事件B,在此基础上又发生了事件A。所以这两个事件发生的概率,可以记做P(AB)=P(A|B)*P(B) 和 P(BA)=P(B|A)*P
原创
2017-06-29 17:36:17
1455阅读
参考资料地址: http://www.cnblogs.com/leoo2sk/archive/2010/09/17/naive-bayesian-classifier.html我的数据挖掘算法实现源码地址:htt...
转载
2020-01-12 19:09:00
209阅读
2评论
介绍要介绍朴素贝叶斯算法(Naive Bayes),那就得先介绍贝叶斯分类算法,贝叶斯分类算法是统计分类算法的一种,他是一类利用概率统计知识进行的一种分类算法。而朴素贝叶斯算法就是里面贝叶斯算法中最简单的一个算法。为什么叫做朴素贝叶斯,因为他里面的各个类条件是独立的,所以一会在后面的计算中会起到很多方便的作用。朴素贝叶斯算法原理首先在这里用到了一个概率公式:P(B|A)的意思是在A事件的情况下,发
转载
2020-01-12 19:09:00
132阅读
2评论
贝叶斯分类是利用概率统计知识进行分类的算法,其分类原理是贝叶斯定理。贝叶斯定理的公式如下: 贝叶斯公式表明,我们可以从先验概率P(A)、条件概率P(B|A)和证据P(B)来计算出后验概率。 朴素贝叶斯分类器就是假设证据之间各个条件相互独立的基础上,根据计算的后验概率选择各类别后验概率最大的类别作为目标证据的类别。 构建朴素贝叶斯分类器的步骤如下:1
原创
2017-02-05 21:16:25
2040阅读
大家好,沉寂了好久之后,终于决定发第二篇文章。闲话少叙,请看正文。 朴素贝叶斯是贝叶斯决策论的一部分,在讲述贝叶斯之前,先阐述一下贝叶斯决策论。 一、贝叶斯决策论 贝叶斯决策论是概率框架下实施决策的基本方法。我们以多分类任务为例来解释其基本原理 1.1贝叶斯条件风险的提出:假设有N种可能的类别标记,即,表示将一个真实标记为的样本误分为所产生的损失。那么基于后验概率P(|),我们可以将样本x分
转载
2024-07-08 10:10:38
61阅读
(一)朴素贝叶斯算法简介。朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。算法的基础是概率问题,分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。朴素贝叶斯假设是约束性很强的假设,假设特征条件独立,但朴素贝叶斯算法简单,快速,具有较小的出错率。在朴素贝叶斯的应用中,主要研究了电子邮件过滤以及文本分类研究。
转载
2023-12-07 18:44:15
104阅读
朴素贝叶斯分类一、贝叶斯分类 贝叶斯分类是一类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。先验概率 根据以往的经验和分析得到的概率,用P(Y)来代表在没有训练数据前假设Y拥有的初始概率。后验概率 根据已经发生的时间来分析得到的概率。以P(Y|X)代表假设X成立的情况下观察Y数据的概率,因为它反映了在看到训练数据X后Y成立的置信度。联合概率 是指在多元的概率分布中多个随机变量分别满
转载
2023-09-04 10:52:41
131阅读
贝叶斯分类贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。这篇文章我尽可能用直白的话语总结一下我们学习会上讲到的朴素贝叶斯分类算法,希望有利于他人理解。 1
分类问题综述 对于分类问题,其实谁都不会陌生,日常生活中我们每天都进行着分类过程。例如,当你看到一个人,你的脑子下意识判断他
转载
2024-01-26 09:29:21
69阅读
前言:朴素贝叶斯分类算法是一种基于贝叶斯定理的简单概率分类算法。贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况下,如何完成推理和决策任务。概率推理是与确定性推理相对应的。而朴素贝叶斯分类器是基于独立假设的,即假设样本每个特征与其他特征都不相关。朴素贝叶斯分类器依靠精确的自然概率模型,在有监督学习的样本集中能获取得非常好的分类效果。在许多实际应用中,朴素贝叶斯模型参数估
转载
2023-07-19 21:38:25
81阅读
说起朴素贝叶斯,我脑海中的第一印象是各种独立事件组合发生的概率。 所谓朴素贝叶斯,其实就是根据已知独立事件来求未知组合发生的概率。 举个例子: 当一个病人 患上头痛,职业是农夫,那么他的疾病最可能是什么? 这就是朴素贝叶斯要估计的事情。 定义:朴素贝叶斯是基于贝叶斯定律和特征条件独立假设的**分类方法,**根据提供的数据集,首先基于特征条件独立假设学习输入/输出的联合概率发布,然后基于此模型,对于
转载
2024-01-21 04:50:13
101阅读
贝叶斯分类(朴素)• 是一种统计学分类方法• 可以用来对一个未知的样本判定其属于特定类的概率• 分类模型是在有指导的学习下获得• 分类算法可与决策树和神经网络算法媲美• 用于大型数据库时具有较高的分类准确率和高效率。基础概念朴素贝叶斯分类的假设前提:类别C确定的情况下,不同属性(X1,X2)间是相互独立的,即条件独立。(朴素即为条件独立)即:C确定下,P(X1,X2)=P(X1)P(X2) ;或表
转载
2023-11-29 11:21:12
176阅读
朴素贝叶斯(西瓜数据集分类,社区恶意留言分类,垃圾邮件分类,新浪新闻分类),AODE分类器 代码实现以下代码为本人学习后,修改或补充后的代码实现,数据集和原代码请参考:https://github.com/Jack-Cherish/Machine-Learning西瓜数据集分类import numpy as np
from math import exp, sqrt, pi
def getDa
转载
2024-06-14 10:16:03
225阅读
朴素贝叶斯算法仍然是流行的挖掘算法之一,该算法是有监督的学习算法,解决的是分类问题,如客户是否流失、是否值得投资、信用等级评定等多分类问题。该算法的优点在于简单易懂、学习效率高、在某些领域的分类问题中能够与决策树、神经网络相媲美。但由于该算法以自变量之间的独立(条件特征独立)性和连续变量的正态性假设为前提,就会导致算法精度在某种程度上受影响朴素贝叶斯的实现流程1.理解先验概率和后验概率的区别?&n
转载
2023-12-07 22:48:11
83阅读
朴素贝叶斯算法是基于贝叶斯定理和特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。1 数学知识贝叶斯定理:特征条件独立假设:2 朴素贝叶斯2.1 算法原理输入空间:输出空间:y={C1,C2,…,CK}。训练集:T={(x1,y1),(x2,y2),…,(xN,yN)}。对于
转载
2024-04-25 10:38:50
156阅读