# 使用PyTorch重写多个参数梯度 在深度学习模型中,梯度计算和更新参数是非常重要的过程。PyTorch提供了灵活的方法来计算和修改梯度,使我们能够实现更加复杂的训练策略。本文将介绍如何在PyTorch重写多个参数梯度,并配有代码示例。 ## 背景知识 在标准的训练过程中,模型参数会根据损失函数的梯度进行更新。我们通常使用`loss.backward()`来计算梯度,然后用优化器(
相信在看到这篇文章之前,你已经看到了各位博主都再说pytorch自定已损失函数很简单,主要通过以下三个手段:继承torch.nn.Module ,重写forward()函数继承torch.nn.autograd.function,重写forward()和backward()函数。输入requires_grad=True,自定义函数。 实质上吧,我觉得这三种方法没什么区别。都会有挺多问题出
在上一篇文章 中,我们自己手动实现了对于softmax操作和交叉熵的计算,可其实这些在Pytorch框架中已经被实现了,我们直接拿来使用即可。但是,为了能够对这些内容有着更深刻的理解,通常我们都会自己手动实现一次,然后在今后的使用中就可以直接拿现成的来用了。在接下来这篇文章中,笔者将首先介绍如何调用Pytorch中的交叉熵损失函数,然后再同时借助nn.Linear()来实现一个简洁版的
内容导读北京时间 3 月 4 日,PyTorch 官方博客发布 1.8 版本。据官方介绍,新版本主要包括编译器和分布式训练更新,同时新增了部分移动端教程。整体来看,本次版本更新涵盖 1.7 版本发布以来,共计 3,000 多次 commit,包括编译、代码优化、科学计算前端 API 以及通过 pytorch.org 提供的二进制文件支持 AMD ROCm。同时 PyTorch 1.8 还为管道和模
一、梯度介绍        梯度是一个向量,是学习(参数更新的方向)。收集数据,构建机器学习模型,得到 判断模型好坏的方法:(回归损失)(分类损失)         通过调整参数,尽可能降低  &nb
在推理引擎架构中,API 接口下来就是模型转换,狭义的模型转换是指将各种框架的模型转换为统一的格式,即模型格式转换;广义的模型转换则还包括图优化部分,因为不同的框架提供的算子不同,且类型太多,存在优化空间。 一、广义模型转换的挑战1.1 格式转换的挑战AI 框架算子的统一。AI 模型本身包含众多算子,特点是它们的重合度高但不完全相同,而推理引擎需要用有限的算子去实现不同框架的算子。支持不同框架
PyTorch中的梯度累加使用PyTorch实现梯度累加变相扩大batch这种模式可以让梯度玩出更多花样,比如说梯度累加(gradient accumulation)传统的训练函数,一个batch是这么训练的:for i,(images,target) in enumerate(train_loader): # 1. input output images = images.cud
1.梯度消失和梯度爆炸深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion)。当神经网络的层数较多时,模型的数值稳定性容易变差。假设一个层数为L的多层感知机的第l层H(l)的权重参数为W(l),输出层H(L)的权重参数为W(L)。为了便于讨论,不考虑偏差参数,且设所有隐藏层的激活函数为恒等映射(identity mapping)ϕ(x)=x。给定输入X,多层感知机
创建tensortorch.empty(),未初始化的Tensor torch.rand(),随机初始化的Tensor(均匀分布) torch.randn(),标准分布 torch.normal(),正态分布 torch.uniform(),均匀分布 torch.randperm(),随机排列 torch.zeros(),全零的Tensor torch.ones(),全一的Tensor torch
前言本篇笔记以介绍 pytorch 中的 autograd 模块功能为主,主要涉及 torch/autograd 下代码,不涉及底层的 C++ 实现。本文涉及的源码以 PyTorch 1.7 为准。torch.autograd.function (函数的反向传播)torch.autograd.functional (计算图的反向传播)torch.autograd.gradcheck (数值梯度检查
PyTorch学习(二)前言一、autograd自动求梯度二、使用步骤1.示例一2.示例二 前言torch.autograd是 PyTorch 的自动差分引擎,可为神经网络训练提供支持。神经网络就是寻求一个拟合函数,但是因为参数过多,所以不得不借助每一点的梯度来一点一点的接近最佳的loss值,PyTorch 拥有动态的计算图,存储记忆对向量的每一个函数操作,最后通过反向传播来计算梯度,这可以说是
文章目录前言1 概念2 Tensor3 梯度 前言在深度学习中,我们经常需要对函数求梯度(gradient)。PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播。本节将介绍如何使用autograd包来进行自动求梯度的有关操作。1 概念Tensor是这个包的核心类,如果将其属性.requires_grad设置为True,它将开始追踪(track)在其上的
1. model.train()有什么用?如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train(),在测试时添加model.eval()。其中model.train()是保证BN层用每一批数据的均值和方差,而model.eval()是保证BN用全部训练数据的均值和方差;而对于Dropout,model.train()是随机取一部分网络
目录析构函数__del__()垃圾回收机制引用计数标记-清除分代回收重写__repr__()与__str__()函数访问限制 __XX 变量用中文写人开枪射击子弹的代码继承继承的作用Student类继承Person类多继承的实现多态多态的优点多态存在的三个必要条件析构函数__del__()释放对象时自动调用析构函数手动释放对象,对象释放以后就不能再访问了class Preson(object):
首先,我们知道,深度学习网络中的参数是通过计算梯度,在反向传播进行更新的,从而能得到一个优秀的参数,但是有的时候,我们想固定其中的某些层的参数不参与反向传播。比如说,进行微调时,我们想固定已经加载预训练模型的参数部分,只想更新最后一层的分类器,这时应该怎么做呢。定义网络# 定义一个简单的网络 class net(nn.Module): def __init__(self, num_clas
转载 2023-11-08 22:48:56
586阅读
  神经网络是通过梯度下降来学习的,在进行反向传播时,进行每一层的梯度计算,假设梯度都是比较大的值,计算到第一层的梯度时,会呈指数级增长,那么更新完的参数值会越来越大,产生梯度爆炸现象。一个比较常见的表现就是损失变成non。   梯度裁剪(Gradient Clipping)是一种防止梯度爆炸或梯度消失的技术,它可以在反向传播过程中对梯度进行缩放或截断,使其保持在一个合理的范围内。梯度裁剪有两种常
学习教材: 动手学深度学习 PYTORCH 版(DEMO)(https://github.com/ShusenTang/Dive-into-DL-PyTorch) PDF 制作by [Marcus Yang](https://github.com/chenyang1999) 本文目录:1. 前言2.Tensor的.requires_grad属性3. Tensor 的 detach()函数4. Te
简介如果将Tensor的属性.requires_grad设置为True,它将开始追踪(track)在其上的所有操作(这样就可以利用链式法则进行梯度传播了)。完成计算后,可以调用.backward()来完成所有梯度计算。此Tensor的梯度将累积到.grad属性中。注意在y.backward()时,如果y是标量,则不需要为backward()传入任何参数;否则,需要传入一个与y同形的Tensor如果
PyTorch入门实战教程笔记(十):梯度相关操作1梯度概念梯度也就是所有自变量偏微分的向量(而不是标量),与导数不同,梯度有方向还有大小,反应朝某一方向梯度变化的大小,可用下式表示,例如,z = y2 - x2 ,其梯度为▽z = (-2x, 2y), 在(0,0)处的梯度为(0, 0), 在(1, 1)处的梯度为(-2,2)。用梯度找极小值解在PyTorch入门实战教程笔记(二):简单回归问题
Pytorch学习:Task2-3 梯度计算和梯度下降过程、PyTorch全连接层原理和使用1. 学习自动求梯度学习梯度下降原理1.线性回归 linear regression2.损失函数 loss function3. 最小均方法 Least mean square4. 梯度下降 -- 随机梯度下降SGD小练习2. 全连接层学习步骤一:全连接层原理学习1、全连接层的推导:2、全连接层的前向计算
  • 1
  • 2
  • 3
  • 4
  • 5