TensorFlow读取二进制文件数据到队列 TensorFlow是一种符号编程框架(与theano类似),先构建数据流图再输入数据进行模型训练。Tensorflow支持很多种样例输入的方式。最容易的是使用placeholder,但这需要手动传递numpy.array类型的数据。第二种方法就是使用二进制文件和输入队列的组合形式。这种方式不仅节省了代码量,避免了进行d
TensorFlow程序读取数据一共有3种方法:供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据。从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据。预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况)。使用Tensorflow训练神经网络模型,首先要读取数据,宝宝参照
TensorFlow Version == 2.0.0image_raw = tf.io.read_file('./img.jpg')image = tf.image.decode_image(image_raw, channels=None, dtype=tf.dtypes.uint8)print(image)image_raw = tf.io.gfile.GFile('./img.j...
原创 2022-12-07 14:10:06
133阅读
本文的代码以及思路都是参考别人的,现在只是整理一下思路,做一些解释,毕竟是小白。https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/data代码分为三个部分,input_data.py处理原始数据,因为下载的数据图片大小不一致等,model.py编写网络的模型,使用了两个卷积层,两个池化层以及两个全连接层,最后是training.
转载 2024-04-19 13:32:51
55阅读
TensorFlow程序读取数据一共有3种方法:供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据。从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据。预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况)。使用Tensorflow训练神经网络模型,首先要读取数据,宝宝参照
from tensorflow.python.keras.preprocessing.image import load_img,img_to_array def main(): #tagert_size 修改图像大小 image = load_img("./bus/300.jpg",target_
原创 2021-08-25 14:23:19
372阅读
TensorFlow读取数据一般有两种方法:使用placeholder读内存中的数据使用queue读硬盘中的数据Dataset API同时支持从内存和硬盘的读取,相比之前的两种方法在语法上更加简洁易懂。此外,如果想要用到TensorFlow新出的Eager模式,就必须要使用Dataset API来读取数据。一、tensorflow读取机制图解首先需要思考的一个问题是,什么是数据读取?以图像数据
关于Tensorflow读取数据,官网给出了三种方法:供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据。 从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据。 预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况)。在使用Tensorflow训练数据时,第一步为准备数据,
  考虑到要是自己去做一个项目,那么第一步是如何把数据导入到代码中,何种形式呢?是否需要做预处理?官网中给的实例mnist,数据导入都是写好的模块,那么自己的数据呢?  一、从文件中读取数据(CSV文件、二进制文件、图片或其他格式)  读取文件,都需要一个阅读器reader和一个转换解码操作decode,不同格式的文件对应不同的接口API。  1)CSV文件:用的文件读取器和解码器是 T
转载 2024-07-29 09:56:44
137阅读
一、tensorflow读取机制图解首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示:假设我们的硬盘中有一个图片数据集0001.jpg,0002.jpg,0003.jpg……我们只需要把它们读取到内存中,然后提供给GPU或是CPU进行计算就可以了。这听起来很容易,但事实远没有那么简单。事实上,我们必须要把数据先读入后才能进行计算,假设读入用时0.1s,计算用
转载 2024-06-11 09:50:25
42阅读
低效的IO方式最近通过观察PAI平台上TensoFlow用户的运行情况,发现大家在数据IO这方面还是有比较大的困惑,主要是因为很多同学没有很好的理解本地执行TensorFlow代码和分布式云端执行TensorFlow的区别。本地读取数据是server端直接从client端获得graph进行计算,而云端服务server在获得graph之后还需要将计算下发到各个worker处理(具体原理可以参考视频教
作者:何之源 Dataset API是TensorFlow 1.3版本中引入的一个新的模块,主要服务于数据读取,构建输入数据的pipeline。 此前,在TensorFlow读取数据一般有两种方法: 使用placeholder读内存中的数据 使用queue读硬盘中的数据(关于这种方式,可以参考我之前的一篇文章:十图详解tensorflow数据读取机制) 像Dataset API同时支持从内存
# 使用tf.data加载图片 # 使用的数据集分布在图片文件夹中,一个文件夹含有一类图片 import tensorflow as tf AUTOTUNE = tf.data.experimental.AUTOTUNE # 下载并检查数据集:花卉照片 # 检索图片:训练之前需要一组图片来教会网络想要训练的新类别。 import pathlib data_root_orig = tf.ker
转载 2024-04-11 10:17:09
42阅读
# -*- coding: utf-8 -*- import tensorflow as tf filename = '2.jpg' with tf.gfile.FastGFile(filename,'rb') as f: image_data = f.read() with tf.Session() as sess: image = sess.run(image_data)
转载 2024-04-23 08:33:07
52阅读
目录 图像基本概念图像基本操作图像基本操作API图像读取API狗图片读取CIFAR-10二进制数据读取TFRecordsTFRecords存储TFRecords读取方法 图像基本概念在图像数字化表示当中,分为黑白和彩色两种。在数字化表示图片的时候,有三个因素。分别是图片的长、图片的宽、图片的颜色通道数。那么黑白图片的颜色通道数为1,它只需要一个数字就可以表示一个像素位;而彩色照片就不一样了,
Tensorflow中之前主要用的数据读取方式主要有:建立placeholder,然后使用feed_dict将数据feed进placeholder进行使用。使用这种方法十分灵活,可以一下子将所有数据读入内存,然后分batch进行feed;也可以建立一个Python的generator,一个batch一个batch的将数据读入,并将其feed进placeholder。这种方法很直观,用起来也比较方便
转载 2024-07-24 13:29:33
62阅读
回到上一篇文件的读取分这么几步: # 构造队列 # 1,构造图片文件的队列 file_queue = tf.train.string_input_producer(filelist) # 构造阅读器 # 2,构造图片阅读器读取队列数据(按一张) reader = tf.WholeFileReader() # 读取文件然后解码 # 3, 读取图片数据并进行解码 key,v
转载 2024-04-11 09:35:13
49阅读
1前言在这里我先明确一下开发环境和库版本:系统:win10 64位;IDE:Pycharm2019(免费版);Dlib:19.8.1;Opencv:4.1.1.26;Keras:2.3.1;numpy:1.17.4;scikit-learn:0.19.2;tensorflow:2.1.0。       因为在我以前写的一篇关于人脸识别的文章下,有一些同学问了
图片数据的常用训练步骤由于mnist数据集的别捷性,在讲解原理性的知识时,是首选的数据集。本文整理了一个模型从数据及准备到训练的完整步骤,可以作为模板使用。一、数据集的加载这一步是将数据标注工具标注完的数据加载到内存的过程,关于数据标注的具体内容请参考 深度学习,先学会制作自己的数据集 由于是深度学习的起步阶段,我们先简单试用一下mnist数据集。from __future__ import ab
转载 2023-11-14 08:41:27
150阅读
  本文面对三种常常遇到的情况,总结三种读取数据的方式,分别用于处理单张图片、大量图片,和TFRecorder读取方式。并且还补充了功能相近的tf函数。1、处理单张图片  我们训练完模型之后,常常要用图片测试,有的时候,我们并不需要对很多图像做测试,可能就是几张甚至一张。这种情况下没有必要用队列机制。import tensorflow as tf import matplotlib.pyplot
转载 2023-06-27 21:53:59
95阅读
  • 1
  • 2
  • 3
  • 4
  • 5