1. 为什么要加窗 每次FFT变换只能对有限长度的时域数据进行变换,因此,需要对时域信号进行信号截断。即使是周期信号,如果截断的时间长度不是周期的整数倍(周期截断),那么,截取后的信号将会存在泄漏。为了将这个泄漏误差减少到最小程度,我们需要使用加权函数,也叫窗函数。加窗主要是为了使时域信号似乎更好地满足FFT处理的周期性要求,减少泄漏。 如下图所示,若周期截断,则FFT频谱为单一谱线。若为非周
转载
2024-03-26 12:33:06
185阅读
KNN算法和Kernel KNN算法的区别KNN算法KNN(K-Nearest Neighbor,简称KNN)算法,是一种常用的监督学习方法,其工作机制为:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本。然后基于这k个“邻居”的信息来进行预测,通常可选择这k个样本中出现最多的类别标记作为测试结果;在回归任务中,可使用“平均法”,即将这k个样本的输出类别标记的平均值作为预测结果;
转载
2024-05-30 01:50:51
99阅读
指数加权平均 (exponentially weighted averges)先说一下指数加权平均, 公式如下:\[v_{t}=\beta v_{t-1}+(1-\beta) \theta_{t}
\]\(\theta_t\)\(v_t\) 是用来替代\(\theta_t\)的估计值,也就是加权平均值\(\beta\)设 \(\beta = 0.9\)\[v_{100} = 0.1 * \thet
这样,前向分步算法将同时求解从m=1到M的所有参数βm��,γm��的优化问题简化为逐次求解各个βm��,γm��的问题。GBDT(Gradient Boost Decision Tree梯度提升决策树)基于残差学习的提升树算法(加法模型+向前分步算法)GBDT是以决策树(CART)为基学习器的GB算法,是迭代树,不是分类树。GBDT的核心就在于:每个基树拟合的是前一棵树的残差,真实值是预测值和残
一、KNN算法概述
KNN作为一种有监督分类算法,是最简单的机器学习算法之一,顾名思义,其算法主体思想就是根据距离相近的邻居类别,来判定自己的所属类别。算法的前提是需要有一个已被标记类别的训练数据集,具体的计算步骤分为一下三步:
1、计算测试对象与训练集中所有对象的距离,可以是欧式距离、余弦距离等,比较常用的是较为简单的欧式距离;
2、找出上步计算的距离中最近的K个对象,
距离变换是计算并标识空间点(对目标点)距离的过程,它最终把二值图像变换为灰度图像[1](其中每个栅格的灰度值等于它到最近目标点的距离)。目前距离变换被广泛应用于计算机图形学、GIS空间分析和模式识别等领域。
按距离类型划分,距离变换可分为:非欧氏距离变换和欧氏距离变换(EDT)。其中EDT精度高,与实际距离相符,应用更广泛。目前随着应用的需要,已经有多种EDT算法[2-6]。按变换方式分,
Nginx的负载均衡默认算法是加权轮询算法,本文简单介绍算法的逻辑,并给出算法的Java实现版本。 本文参考了Nginx的负载均衡 - 加权轮询 (Weighted Round Robin) 。 算法简介 有三个节点{a, b,
JS 一、kNN算法概述 kNN是k-Nearest Neighbour的缩写,这是一种非常简单且易于理解的分类算法。回想我们从小到大在认知事物的过程当中,我们是如何判断一种事物是属于哪种类别的?通常的一种思路就是,分析当前这个事物与我们之前所知道的类别特征进行比对,找出最接近的一类,然后就可以把这个东西归属于这一个类别。kNN算法大致就是这么一个思路,直接通过测量不同特征值之间的距离来达到分
转载
2024-05-30 08:48:11
34阅读
在做灰度的时候,需要用到加权轮训算法,于是选择了最简单的最大公约数法,在这里做下记录(下面内容为摘抄原文,并修正部分文字)大体方法:这种算法的原理是:在服务器数组S中,首先计算所有服务器权重的最大值max(S),以及所有服务器权重的最大公约数gcd(S)。 index表示本次请求到来时,选择的服务器的索
一、四种平均算法平方平均数:Qn=√ [(a12+a22+...+an2)/n] ——>应用:标准差算术平均数:An=(a1+a2+...+an)/n ——>1阶平均 ,是加权算数平均的一种特殊形式,缺点:容易受极端值影响几何平均数:Gn=(a1·a2...an)1/n ——>调和平均数:Hn=n/(1/a1+1/a2+...+1/an) ——>-1阶平均 ——
转载
2024-05-21 14:20:42
42阅读
K近邻算法本算法代码/笔记参考《机器学习实战》、《统计学习方法》1.简介 KNN工作原理:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k
转载
2024-07-17 16:27:01
39阅读
最近邻算法最近邻算法是机器学习算法中比较简单的一种算法了,下面用图阐述一下该算法。 上面笔记只说了knn的最常出现的一种分类方式,下面还将补充一些其他方式。knn加权分类: 加权的多数投票法;对于k个样本,每个样本到待测样本的距离的倒数作为当前样本的权重系数,在k个样本中,统计各个类别对应权重的累加和,最终将权重系数最大的那个对应类别作为待测样本的类别。knn回归预测: 将k个样本的y值的均值作为
转载
2024-07-09 19:35:18
50阅读
加权kNN上篇文章中提到为每个点的距离增加一个权重,使得距离近的点可以得到更大的权重,在此描述如何加权。反函数该方法最简单的形式是返回距离的倒数,比如距离d,权重1/d。有时候,完全一样或非常接近的商品权重会很大甚至无穷大。基于这样的原因,在距离求倒数时,在距离上加一个常量: weight = 1 / (distance + const) 这种方法的潜在问题是,它为近邻分配很大的权重,稍远一点
转载
2023-05-31 10:39:16
276阅读
加权kNN 上篇文章中提到为每个点的距离增加一个权重,使得距离近的点可以得到更大的权重,在此描述如何加权。反函数 该方法最简单的形式是返回距离的倒数,比如距离d,权重1/d。有时候,完全一样或非常接近的商品权重会很大甚至无穷大。基于这样的原
原创
2022-04-08 10:09:12
2826阅读
加权kNN 上篇文章中提到为每个点的距离增加一个权重,使得距离近的点可以得到更大的权重,在此描述如何加权。反函数 该方法最简单的形式是返回距离的倒数,比如距离d,权重1/d。有时候,完全一样或非常接近的商品权重会很大甚至无穷大。基于这样的原因,在距离求倒数时,在距离上加一个常量: weight = 1 / (distance + const) 这种方
原创
2021-06-07 23:22:00
1773阅读
DQN网络DQN(Deep Q Networks)网络属于深度强化学习中的一种网络,它是深度学习与Q学习的结合,在传统的Q学习中,我们需要维护一张Q(s,a)表,在实际运用中,Q表往往是巨大的,并且当状态和行为的组合无穷时,则无法通过查表的方式获取最优的行为,因此我们需要一个深度学习模型来拟合Q(s,a)表,即能够帮助Q算法在对应的状态下找出最优的行为,即DQN网络,其网络结构如下图所示:其中,D
K-Means介绍 K-means算法是聚类分析中使用最广泛的算法之一。它把n个对象根据他们的属性分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。其聚类过程可以用下图表示:
如图所示,数据样本用圆点表示,每个簇的中心点用叉叉表示。
转载
2024-08-09 12:25:49
55阅读
注:本文基于python 2.7版本编写kNN即为(K Nearest Neighbors)K近邻算法,属于监督学习。kNN的算法可以简单理解为一个分类器,其大概过程如下:计算待分类数据和已分类数据的距离按照距离从小到大排序根据用户传递的参数k,统计前k个距离中对应的各个目标分类数量,返回分类数量最多的标签总的来说,也就是可以理解为按照距离远近,少数服从多数的概念。下面看下代码实现:#!/usr/
转载
2023-12-02 13:45:12
51阅读
PageRank简介:是由Google创始人Larry Page 和 Sergey Brin受“论文的影响力”所提出,用于标识网页的重要性的方法,是Google用来衡量一个网站的好坏的唯一标准。在揉合了诸如Title标识和Keywords标识等所有其它因素之后,Google通过PageRank来调整结果,使那些更具“等级/重要性”的网页在搜索结果中另网站排名获得提升,从而提高搜索结果的相关性和质量
我们已经了解了几种其他的一些生成模型,并且解释了GAN与这些模型的工作方式是不同的,那么GAN是如何工作的?3.1 GAN 框架GAN的基本思想是两个玩家共同参与的二人零和博弈。 其中一个叫生成器。 生成器试图生成与训练样本相同分布的样本。 另一个玩家是判别器。 判别器用来判别样本的真伪。 判别器使用传统的监督学习的方法,将输入分类为真和假两个类。 生成器被优化来试图欺骗判别器。 举个例子来说,