计算机视觉面试宝典–语义分割篇一.deeplab系列1.简述Deeplab v1网络DeepLab是结合了深度卷积神经网络(DCNNs)和概率图模型(DenseCRFs)的方法。在实验中发现DCNNs做语义分割时精准度不够的问题,根本原因是DCNNs的高级特征的平移不变性(即高层次特征映射,根源在于重复的池化和下采样)。针对信号下采样或池化降低分辨率,DeepLab是采用的atrous(带孔)算法
计算机视觉面试宝典–目标检测篇(一)Faster-Rcnn网络1.faster RCNN原理介绍,要详细画出图 Faster R-CNN是一种两阶段(two-stage)方法,它提出的RPN网络取代了选择性搜索(Selective search)算法后使检测任务可以由神经网络端到端地完成。在结构上,Faster RCNN将特征抽取(feature extraction),候选区域提取(Region
作者丨我要鼓励娜扎编辑丨极市平台导读正值秋招进行时,本文收集了深度学习&计算机视觉方向的相关面试题,涵盖反卷积、神经网络、目标检测等多个方面,内容非常全面。1.什么是反卷积?反卷积也称为转置卷积,如果用矩阵乘法实现卷积操作,将卷积核平铺为矩阵,则转置卷积在正向计算时左乘这个矩阵的转置WT,在反向传播时左乘W,与卷积操作刚好相反,需要注意的是,反卷积不是卷积的逆运算。一般的卷积运算可以看成是
计算机视觉面试宝典–深度学习机器学习基础篇(三)本篇主要包含数据类问题、正则化、激活函数与梯度以及回归等相关面试经验。数据类问题1.样本不平衡的处理方法①欠采样 - 随机删除观测数量足够多的类,使得两个类别间的相对比例是显著的。虽然这种方法使用起来非常简单,但很有可能被我们删除了的数据包含着预测类的重要信息。②过采样 - 对于不平衡的类别,我们使用拷贝现有样本的方法随机增加观测数量。理想情况下这种
计算机视觉中目标检测、跟踪、识别是最基本的几个task,尤其又以检测最为重要和基础。同时基本上所有的检测任务都需要在给出物体的bounding box之后,给出物体的类别(也就是给识别物体),所以文章中不区分检测和识别任务。笔者从事计算机视觉中目标检测相关的工作还比较多,将自己看到的,学到的,以及相关的一些理解总结如下。帮助自己进行梳理,也希望对后来者有帮助。我大致将目前学术及和工业界出现的目标检
原标题:计算机视觉与机器视觉未来哪个更具优势?视觉技术在人工智能体系中有很重要的地位,人工智能落地应用主要有图像识别、语音合成、机器翻译等感知类任务上的应用和产业应用场景。视觉技术又可分计算机视觉和机器视觉,应用场景的不同是计算机视觉和机器视觉的最根本差别。计算机视觉模拟人眼的功能,而且更重要的是使计算机完成人眼所不能胜任的工作。而机器视觉则是建立在计算机视觉理论基础之上,偏重于计算机视觉技术的工
目录选择题简答题第一题第二题编程题第一题题意思路代码第二题题意思路代码        笔试共有选择题30道、简答题2道、编程题2道,分别为60分、60分、40分,两个小时。以下内容的编写全凭记忆和个人理解,如有什么不对的地方,希望大家见谅。 选择题       具体题目肯定记不住了,就说说都有哪些题型吧。 &nbs
数据驱动的图像分类数据集图像的构建在收集数据集之前,我们需要知道对于图像分类,哪些因素会影响计算机对于图像的识别,也就是跨越**“语义鸿沟”**(即如何将我们人类所看到的高层意思转换为计算机所识别的低二进制) 影响计算机对于图像处理的因素1.视角 对于人来说,从不同的角度看一张图片能很好的识别出是否是同一个物体,而对于机器提取同一物体的不同角度的特征是困难的。2.光照 在不同的光照条件下,同一物体
(1)基于区域的跟踪算法基于区域的跟踪算法基本思想是:将目标初始所在区域的图像块作为目标模板,将目标模板与候选图像中所有可能的位置进行相关匹配,匹配度最高的地方即为目标所在的位置。最常用的相关匹配准则是差的平方和准则,(Sum of Square Difference,SSD)。 起初,基于区域的跟踪算法中所用到的目标模板是固定的,如 Lucas 等人提出 Lucas-Kanade 方法,该方法利
转载 2017-05-16 21:28:00
563阅读
计算机视觉面试宝典–目标检测篇(二)综合问题1.简要阐述一下One-Stage、Two-Stage模型One-Stage检测算法,没有selective search产生region proposal的阶段,直接产生物体的类别概率和位置坐标,经过单次检测即可直接获得最终的检测结果。相比Two-Stage有更快的速度。代表网络有YOLO v1/v2/v3/9000,SSD,Retina-Net. (
Computer vision is the emulation of biological visionusing computers and machines. It deals with the problem of inferring three-dimensional (3D) information about  the world and the objects
计算机视觉是一种涉及计算机处理和分析数字图像和视频的技术和方法。计算机视觉领域的目标是使计算机能够模拟人类视觉,从而可以理解和解释数字图像和视频中的信息。计算机视觉可以应用于许多领域,包括机器人、医学图像处理、安全检测、自动驾驶汽车、视频监控等。什么是计算机视觉?有哪些方向?计算机视觉通常涉及以下步骤:图像获取:计算机视觉系统首先需要从数字摄像机、扫描仪或其他数字源中获取数字图像或视频。图像预处理
# 计算机视觉的基础与应用:达摩院面试指南 随着人工智能的迅速发展,计算机视觉(Computer Vision,CV)在各个领域的应用日益增加。无论是自动驾驶、医疗影像分析、还是人脸识别,计算机视觉都显得尤为重要。本篇文章将为您介绍计算机视觉的基础概念、一些常见的算法,以及在达摩院面试中可能遇到的相关问题。 ## 什么是计算机视觉计算机视觉是让计算机能够“看”的科学与技术,旨在使计算机
原创 2024-09-17 07:09:04
72阅读
# 计算机视觉面试试题实现指南 计算机视觉通常是通过分析和处理图像或视频数据来提取信息的技术。在面试中,常见的计算机视觉试题包括图像分类、目标检测、图像分割等。本文将带你逐步实现一个简单的图像分类算法,使用 Python 和 TensorFlow。为了清晰地介绍每一步,我们将整件事情的过程分解为几个步骤,并给出相应的代码示例。 ## 流程步骤 以下是实现图像分类所需的步骤: | 步骤编号
原创 2024-10-28 05:51:49
24阅读
本人打算借助暑假的时间学习下Opencv计算机视觉的一些知识,于是想通过博客记录下自己的学习笔记,同时与大家分享~~图像的基本操作       观察lena的图像,我们取其中一块进行细致的解读,如图我们取出一个区域,在这个区域中存在许多方格块,自左上我们可以依次标记为1,2,3……,其中每个小格叫做一个像素点,计算机中就是由这样一个个像素点来构成一张张图像的
GAN从提出到现在不过三年时间,但是与之相关的论文已经是浩如星海。从很多计算机视觉领域的论文里我们可以发现,往往在旧的方法基础上加个判别器,套上对抗机制,也能取得比原先要好的效果。而对GAN为什么能取得更好的效果,学术界仍没有统一的意见和完备的解释。以图像生成为例,一个比较普遍的解释是,之前我们在图像生成式模型中使用的基于L1范数和L2范数的损失函数,过于注重生成样本与真实样本“像素级”的对应,而
1. 计算机视觉(Computer Vision)一般的CV问题包括以下三类:    1. 图像分类(Image Classification)     2. 目标识别(Object detection)     3. 神经风格转换(Neural Style Transfer)使用传统神经网络处理机器视觉的一
计算机视觉常用术语中英文对照.doc计算机视觉常用术语中英文对照(1) 人工智能Artificial Intelligence认知科学与神经科学Cognitive Science and Neuroscience图像处理Image Processing计算机图形学Computer graphics模式识别Pattern Recognized图像表示Image Representation立体视觉
引言学习的过程总是磕磕绊绊的,最近准备去学一下目标检测,还没开始去学,一个问题就在我的脑海中产生了,那就是图像识别和目标检测有什么区别,我怎么总感觉他们好像是一个东西?带着这个疑问,我去百度了一波,现在总算把这个问题搞定了CV四大任务图像识别和目标检测都是计算机视觉(CV)领域的一个分支,当然CV不只有图像识别和目标检测这两个任务,它还包括其他两个方面的任务。下面我就以一张图片为例,简单解释一下C
项目面试题 1.对python代码进行加速优化时的选择有哪些? 答:numba是一个用于编译Python数组和数值计算函数的编译器,这个编译器能够大幅提高直接使用Python编写的函数的运算速度。numba使用LLVM编译器架构将纯Python代码生成优化过的机器码,通过一些添加简单的注解,将面向数组和使用大量数学的python代码优化到与c,c++和Fortran类似的性能,而无需改变Pytho
  • 1
  • 2
  • 3
  • 4
  • 5