1.cosin相似度(余弦相似度)把图片表示成一个向量,通过计算向量之间的余弦距离来表征两张图片的相似度 # -*- coding: utf-8 -*-
# !/usr/bin/env python
# @Time : 2018/11/17 14:52
# @Author : xhh
# @Desc : 余弦相似度计算
# @File : difference_i
转载
2024-02-19 17:02:45
374阅读
目录前言图像的相似度描述输入描述:输出描述:解题过程总结前言今天我们一起学习一下怎么样计算图像的相似度。图像的相似度描述给出两幅相同大小的黑白图像(用0-1矩阵)表示,求它们的相似度。若两幅图像在相同位置上的像素点颜色相同,则称它们在该位置具有相同的像素点。两幅图像的相似度定义为相同像素点数占总像素点数的百分比。输入描述:第一行包含两个整数m和n,表示图像的行数和列数,用单个空格隔开。1≤m≤10
尺度不变特征变换匹配算法详解 Scale Invariant Feature Transform(SIFT) 1、SIFT综述 尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe在1999年所发表,2004年完
转载
2024-08-27 17:39:21
380阅读
图像匹配的方法主要分为基于灰度值相关和基于特征提取。基于像素匹配: 基于灰度值相关的方法直接对原图和模板图像进行操作,通过区域属性(灰度信息或频域分析等)的比较来反映他们之间的相似性。基于灰度的图像匹配具有速度、定位精度、误差估计等数据的输出。但是这种方式普遍存在的缺陷是时间复杂度高、对比图像尺寸敏感等。原理: NCC是一基于灰度相关的算法,具有不受比例因子误差影响和抗白噪干扰能力等优
转载
2024-01-05 16:49:27
622阅读
文章目录1. PSNR(Peak Signal to Noise Ratio,峰值信噪比)2. SSIM(Structure Similarity Index Measure,结构相似性评价)3. Lpips(Learned Perceptual Image Patch Similarity,图像感知相似度指标)4. NIQE(Natural Image Quality Evaluator,自然
图像相似度评价指标在图像处理中我们经常遇到需要评价两张图像是否相似,给出其相似度的指标,这里总结了三种评判指标均方误差MSE, 结构相似性SSIM, 以及峰值信噪比PSNR, 分三个小结介绍其原理以及对应的matlab以及tensorflow版本的算法实现。均方误差MSE即m×n单色图像 I 和 K(原图像与处理图像)之间均方误差,定义为: 结构相似性S
转载
2023-10-09 21:40:32
957阅读
在图像处理中,巴氏系数可用于进行相似图像匹配。 巴氏系数公式:BC(p,q) = ∑√p(x)q(x) BC为巴氏系数计算结果,p、q分别为两张图像在直方图上同一位置的概率分布,巴氏系数结果范围为(0~1),0为完全
转载
2024-06-19 08:36:37
780阅读
导读有时候我们想要计算两张图片是否相似,而用来衡量两张图片相似度的算法也有很多,例如:RMSE、PSNR、SSIM、UQI、SIFT以及深度学习等。这篇文章主要介绍,RMSE、PSNR、SSIM、UQI这些指标的计算和应用,关于SIFT算法来计算图像的相似度在后面的文章中再进行介绍影响这些算法的结果也有很多因素,图片的噪声、平移、缩放、旋转、裁剪、透视变换等,都会影响到算法的最终结果,所以我们需要
转载
2024-01-09 19:59:10
1991阅读
最近经交流被问到傅里叶变换用于特征匹配的具体原理、及在解决分类问题时,为何欧式距离可以用于n-1维向量空间的相似性度量,奈何一时无语凝噎,难以用简洁通俗的语言来解释,故在此总结留念:1.FFT用于特征匹配(即相位相关法)图像配准的基本问题是找出一种图像转换方法,用以纠正图像的形变。造成图像形变的原因多种多样,例如对于遥感图像而言,传感器噪声、由传感器视点变化或平台不稳定造成的透视变化、被拍摄物体的
转载
2024-04-22 22:51:08
170阅读
1. SSIM(结构相似性度量)这是一种全参考的图像质量评价指标,分别从亮度、对比度、结构三个方面度量图像相似性。SSIM取值范围[0, 1],值越大,表示图像失真越小。在实际应用中,可以利用滑动窗将图像分块,令分块总数为N,考虑到窗口形状对分块的影响,采用高斯加权计算每一窗口的均值、方差以及协方差,然后计算对应块的结构相似度SSIM,最后将平均值作为两图像的结构相似性度量,即平均结构相似性SSI
转载
2023-12-07 08:49:15
156阅读
1 SSIM(结构相似性度量)(Structural Similarity)图片变换之后,度量失真图像(distorted image)的质量如何,需要对它进行图像质量评价(image quality assessment),这可以用作神经网络中的损失函数来度量生成图片的质量。这是一种全参考的图像质量评价指标,分别从亮度、对比度、结构三个方面度量图像相似性。 在图像质量评估之中,局部求SSIM指数
转载
2023-12-10 08:46:31
122阅读
先闲扯下pyspark环境的问题;前段时间在帮助算法组的同学使用spark跑一些模型,因为那边的同学没有使用过spark,且不会scala和java,而他们的诉求是使用python跑一些spark的任务;所以我这边就协助配置了一下python on spark的环境,这个环境配置起来还是挺费劲的;python的环境没有使用conda[为啥没用?个人习惯;但需要注意的是,如果使用conda的话pyt
转载
2024-09-26 15:49:37
73阅读
深度学习计算图片相似度是近年来计算机视觉领域的一个重要研究方向,旨在通过利用深度学习模型来评估图像之间的相似性。这一过程通常涉及提取图像的特征向量,并利用距离测量(如余弦相似度或欧几里得距离)来计算不同图像间的相似度。
### 问题背景
随着社交网络和电子商务的发展,用户对图像相似度的需求日益增加。通过深度学习技术,可以更加精确地检索到与给定图片相似的其他图片。该问题的背景如下:
- 用户希
一。基本概念 图像相似度计算就是对两幅图片之间内容的相似程度进行打分,根据分数的高低来判断图像内容的相似程度,这也是图像分类的基础。如下面这幅图像的两位人头虎身兽,用不同的算法进行相似度计算,相似度在60%~87%之间~~ 二。算法总结计算图像相似度的算法有很多,常见的有以下几种:1。基于直方图。直方图能够描述一幅图像中颜色的全局分布,是一种入门级的图像相似度计算方法。该算法计算过程
转载
2023-12-11 12:36:26
201阅读
曼哈顿距离(Manhattan Distance)欧氏距离(Euclidean Distance)切比雪夫距离(Chebyshev Distance)闵氏距离(Minkowski Distance)标准化欧氏距离 (Standardized Euclidean Distance)马氏距离(Mahalanobis Distance)余弦相似度(Cosine Similarity)改进的余弦相似度(
转载
2024-01-17 15:56:08
233阅读
哈希算法实现图片相似度计算 实现图片相似度比较的哈希算法有三种:均值哈希算法,差值哈希算法,感知哈希算法1.均值哈希算法 一张图片就是一个二维信号,它包含了不同频率的成分。亮度变化小的区域是低频成分,它描述大范围的信息。而亮度变化剧烈的区域(比如物体的边缘)就是高频的成分,它描述具体的细节。或者说高频可以提供图片详细的信息,而低频可以提供一个框架。 而一张大的,详细的图片有很高的频率,而小图片缺乏
转载
2023-11-13 08:29:36
182阅读
文章目录1.余弦相似度计算2.哈希算法计算图片的相似度3.直方图计算图片的相似度4.SSIM(结构相似度度量)计算图片的相似度5.基于互信息(Mutual Information)计算图片的相似度 1.余弦相似度计算把图片表示成一个向量,通过计算向量之间的余弦距离来表征两张图片的相似度。from PIL import Image
from numpy import average, dot, l
转载
2023-08-04 15:01:16
135阅读
本文摘选自《基于半监督和主动学习相结合的图像的检索研究》。讲述了图像相似度度量的方法。 图像检索的性能不仅依赖于所抽取的图像特征,在颜色、纹理和形状等图像特征被提取出并建立起索引后,图像检索的关键就在于所采用的相似度量(或距离度量)函数。它直接关系到图像检索的结果和检索效率。基于文本的检索方法采用的是文本的精确匹配,而基于内容的图像检索系统是一种非精确的匹配,通过计算查询示例图像和候选图
利用直方图距离计算图片相似度计算公式:其中,G和S为两张图片的图像颜色分布直方图,N为颜色空间样点数。这里使用分块的方法计算相似度,用以提高各部分的特征,防止图片颜色相似导致计算的相似度高。利用平均哈希算法计算图片相似度计算步骤:缩放图片:一般大小为8*8,64个像素值简化色彩,转化为灰度图:可以使用Image的convert(‘L’)方法计算平均值:计算出灰度图所有像素点的像素值的平均值比较像素
转载
2023-11-14 10:43:11
114阅读
距离(distance,差异程度)、相似度(similarity,相似程度)方法可以看作是以某种的距离函数计算元素间的距离,这些方法作为机器学习的基础概念,广泛应用于如:Kmeans聚类、协同过滤推荐算法、相似度算法、MSE损失函数等等。本文对常用的距离计算方法进行归纳以及解析,分为以下几类展开:目录一、闵氏距离(Minkowski Distance)类二、相似度(Similarity)三、字符串