四、灰色人工神经网络人口总量预测模型及应用摘要:针对单一指标进行人口总量预测精度不高的问题,基于灰色系统理论和人工神经网络理论,用1990年至2004年中国人口总量序列建立并训练一个多指标的灰色人工神经网络人口总量预测模型。对2005年至2007年的人口总量进行检验性预测,结果表明灰色人工神经网络模型大大提高了预测精度。关键词:人口总量;灰色系统;BP人工神经网络;灰色人工神经网络模型引言:本文从
转载
2024-03-12 20:34:46
113阅读
1.项目背景灰狼优化算法(GWO),由澳大利亚格里菲斯大学学者 Mirjalili 等人于2014年提出来的一种群智能优化算法。灵感来自于灰狼群体捕食行为。优点:较强的收敛性能,结构简单、需要调节的参数少,容易实现,存在能够自适应调整的收敛因子以及信息反馈机制,能够在局部寻优与全局搜索之间实现平衡,因此在对问题的求解精度和收敛速度方面都有良好的性能。缺点:存在着易早熟收敛,面对复杂问题时收敛精度不
转载
2023-12-28 16:07:52
77阅读
文章目录前言灰色预测灰色关联度比较灰色关联度案例灰色预测模型累加累减加权邻值生成灰色模型GM(1,1)模型推导灰色预测示例题目解题级比检测累加处理带入模型算a b误差运算代码关联代码预测代码总结 前言本片博文只是一篇笔记博文,略有不当之处请务必多多指正!望各位大佬不吝赐教!灰色预测何为灰色预测,这个历史就不多说了。我们更加关心的是这个玩意他能够干什么,适合那些方面的预测,以及相关的原理是什么?对
转载
2024-01-11 15:08:50
56阅读
文章目录灰色预测模型GM数学模型和原理GM(1,1)模型的评价和检验※ 什么时候用灰色预测?灰色预测的例题BP神经网络神经网络介绍例题一:辛烷值的预测例题二:神经网络在多输出中的运用预测模型的建议 灰色预测模型GM数学模型和原理灰色模型(1阶1变量)是如何推导的: 矩阵求导:GM(1,1)模型的评价和检验拓展的GM(1,1)模型※ 什么时候用灰色预测?灰色预测的例题可以先对模型代码思路打一个草稿
转载
2024-03-13 21:28:47
57阅读
【数学建模】(二):数据处理方法:灰色预测+MATLAB神经网络模型+插值与拟合数据处理方法灰色系统模型神经网络模型MATLAB函数相关介绍网格初始化函数网络训练函数网络泛化函数神经网络的拟合神经网络的分类插值一维插值反距离权重发(IDW) 数据处理方法灰色系统模型原始数据必须等时间间距。处理思路:首先对原始数据进行累加,弱化原始时间序列数据的随机因素,建立微分方程。 最终模型式子。 昂,,不想
转载
2023-11-09 06:44:21
109阅读
一、前馈神经网络基本模型前馈神经网络是最基本的神经网络,其中的一些基本概念在神经网络的研究中被广泛的使用。一个前馈神经网络可以看做是一个函数 fθ:x→y 其中输入
x∈Rn,输出
y∈Rm,函数的行为通过参数
θ∈Rp 来决定。 构造一个神经网络,需要的各个要素如下:1、神经元模型神经元模型是构建神经网络的基本模块。神经元模型的要素如下:每个神经元的输入为一个向量 x∈Rn,输
转载
2023-08-08 13:30:42
266阅读
文章目录灰色预测模型相关基本概念GM(1,1)模型的使用步骤GM(1,1)模型的拓展模型GM(1,1)模型的注意事项BP神经网络预测模型的注意事项 灰色预测模型相关基本概念系统的分类:白色系统:系统的信息是完全明确的。灰色系统:系统的部分信息已知,部分信息未知。黑色系统:系统的内部信息完全未知。灰色预测概述:对既含有已知信息又含有不确定信息的系统进行预测,就是对一定范围内变化的、与时间有关的灰色
转载
2023-08-14 15:21:13
269阅读
1.项目背景经济广告是指以营利为目的的广告,通常是商业广告,它是为推销商品或提供服务,以付费方式通过广告媒体向消费者或用户传播商品或服务信息的手段。商品广告就是这样的经济广告。为促进产品的销售,厂商经常会通过多个渠道投放广告。本项目将根据某公司在电视、广播和报纸上的广告投放数据预测广告收益,作为公司制定广告策略的重要参考依据。本项目通过通过人工神经网络回归模型来进行广告投放数据的预测,并通过网格搜
转载
2023-10-23 11:51:43
111阅读
文章目录1. 灰色系统理论简介2. 灰色系统的特点3. 灰色生成4. **累加生成简介**5. GM(1,1)模型6. 预测值的求解7. **GM(1,1)模型精度检验**8. 灰度通用代码8. 运行结果 基于数学建模的预测方法种类繁多,从经典的单耗法、弹性系数法、统计分析法,到目前的灰色预测法。当在使用相应的预测方法建立预测模型时,我们需要知道主要的一些预测方法的研究特点,优缺点和适用范围。
转载
2024-02-10 00:25:14
80阅读
在前面,我们分别使用逻辑回归和 softmax 回归实现了对鸢尾花数据集的分类,逻辑回归能够实现线性二分类的任务,他其实就是最简单的神经网络——感知机。 而softmax回归则实现的是多分类任务,它也可以看做是输出层有多个神经元的单层神经网络。 下面,使用神经网络的思想来实现对鸢尾花数据集的分类,这个程序的实现过程和 softmax 回归几乎是完全一样的。在使用神经网络来解决分类问题时,首先,要设
转载
2023-09-02 00:00:30
199阅读
神经网络算法是由多个神经元组成的算法网络。每一个神经元的作用是这样的:
输入是多个值,输出是一个值。
其会先将多个输入值线性组合,然后把线性组合得到的值进行非线性的映射(要求映射函数可微,因为在反向传播时需要其可导),如常见的非线性映射函数为Sigmoid函数:神经网络是多层的,每一层有多个神经元,上一层神经元的输出作为下一层每个神经元的一个输入。反向传播算法:输出层的神经元的输出和实际值有一定误
转载
2018-12-23 00:30:00
249阅读
原标题:如何从零开始用Python构建神经网络动机:为了深入了解深度学习,我决定从零开始构建神经网络,并且不使用类似 Tensorflow 的深度学习库。我相信,对于任何有理想的数据科学家而言,理解神经网络内部的运作方式都非常重要。本文涵盖了我学到的所有东西,希望你也能从中获益!一、什么是神经网络?许多有关神经网络的介绍资料会将神经网络与大脑进行类比。但我发现,将神经网络简单地描述为一个从输入映射
转载
2023-10-30 23:02:14
665阅读
一、总结二、全部代码数据集下载 提取码:xx1wtestCases、dnn_utils 、lr_utils是三个自己写的文件,可以去底部粘贴import numpy as np
import h5py
import matplotlib.pyplot as plt
from testCases import *
from dnn_utils import *
from lr_utils i
转载
2023-11-01 19:09:26
85阅读
工神经网络(Artificial Neural Network,ANN),简称神经网络(Neural Network,NN)或类神经网络,是一种模仿生物神经网络的结构和功能的数学模型,用于对函数进行估计或近似。 文章目录前言一、需要库的介绍二、使用步骤
1.导入数据,并将数据分为训练集和测试集2.读入数据总结 导入所需要的库pandas:pandas 是基于NumPy&nb
转载
2023-11-28 16:07:09
515阅读
logprobs = np.multiply(np.log(A2),Y)
cost = - np.sum(logprobs) # 不需要使用循环就可以直接算出来。Python的实现数组创建:a = np.random.randn(5,1)
a = np.random.randn(1,5) 申明数组的维度:assert(a.shape == (5,1))
a
转载
2024-01-16 00:55:20
147阅读
python实现经典的3层神经网络
前言随着信息技术的快速发展,利用计算机识别手写数字节省了大量的人工识别成本,具有一定的现实意义。通过Python语言构建神经网络,以手写数字识别为研究对象,不仅对神经网络的原理和数学建模做了详细阐述,还用Python语言模拟实现神经网络模型,通过训练神经网络模型输出识别手写数字的准确度以及相关影响因子的分析,实现了对手写数字的识别。一、神经网络是什么?即: 人工
转载
2023-08-30 10:54:39
264阅读
本文主要用于积累自己学习过程中搭建神经网络的常见代码,如有不准确之处,欢迎各路大神指出!谢谢!训练网络optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
criterion = nn.NLLLoss()optim.SGD ()用于优化神经网络,使得
转载
2023-08-10 23:43:41
196阅读
1.理论 灰色理论认为系统的行为现象尽管是朦胧的,数据是复杂的,但它毕竟是有序的,是有整体功能的。灰数的生成,就是从杂乱中寻找出规律。同时,灰色理论建立的是生成数据模型,不是原始数据模型,因此,灰色预测是一种对含有不确定因素的系统进行预测的方法。 灰色预测是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变
转载
2023-12-23 21:29:09
234阅读
前言卷积神经网络在图像数据的处理中大放异彩。最早发布的卷积神经网络LeNet已经能取得与支持向量机相媲美的结果,深度学习时代又诞生了各种深度网络,特点和适用背景也各不相同。本文按时间顺序介绍几种经典的卷积神经网络模型,内容包括其特点、原理、模型结构及优缺点。一、LeNet发布最早的卷积神经网络之一,它结构简单,只有五层,包括两个卷积层和三个全连接层。该网络在当时的一个主要应用场景是手写数字识别。该
转载
2023-10-13 00:01:51
167阅读
1.深层神经网络深层神经网络其实就是包含更多的隐藏层神经网络。下图分别列举了逻辑回归、1个隐藏层的神经网络、2个隐藏层的神经网络和5个隐藏层的神经网络它们的模型结构。命名规则上,一般只参考隐藏层个数和输出层。例如,上图中的逻辑回归又叫1 layer NN,1个隐藏层的神经网络叫做2 layer NN,2个隐藏层的神经网络叫做3 layer NN,以此类推。如果是L-layer NN,则包含了L-1
转载
2023-10-30 23:46:24
171阅读