1、AlexNetAlexNet中的trick:AlexNet将CNN用到了更深更宽的网络中,其效果分类的精度更高相比于以前的LeNet,其中有一些trick是必须要知道的.ReLU的应用:AlexNet使用ReLU代替了Sigmoid,其能更快的训练,同时解决sigmoid在训练较深的网络中出现的梯度消失,或者说梯度弥散的问题。Dropout随机失活:随机忽略一些神经元,以避免过拟合。神经网络的
理解dropout 开篇明义,dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃。注意是暂时,对于随机梯度下降来说,由于是随机丢弃,故而每一个mini-batch都在训练不同的网络。 dropout是CNN中防止过拟合提高效果的一个大杀器,但对于其为何有效,却众说纷纭。在下读到两篇代表性的论文,代表两种不同的观点,特此分享给大家。组合派 参考文献中
通常过拟合由以下三种原因产生:1. 假设过于复杂;2. 数据存在很多噪音;3. 数据规模太小。 过拟合的解决方法通常有:1. early stopping;2. 数据集扩增;3. 正则化;4. Dropout。Early stopping:对模型的训练过程就是对模型参数的进行学习更新的过程。参数学习的过程中往往会用到一些迭代算法,比如梯度下降法。Early stopping的目的就是在迭代次数还
转载
2024-10-22 20:28:25
119阅读
这篇文章主要介绍了网络协议概述:物理层、连接层、网络层、传输层、应用层详解,本文用生活中的邮差与邮局来帮助理解复杂的网络协议,通俗易懂,文风幽默,是少见的好文章,需要的朋友可以参考下 信号的传输总要符合一定的协议(protocol)。比如说长城上放狼烟,是因为人们已经预先设定好狼烟这个物理信号代表了“敌人入侵”这一抽象信号。这样一个“狼烟=敌人入侵”就是一个简单的协议。协议可
转载
2024-06-03 15:38:53
91阅读
1.batch norm、relu、dropout 等的相对顺序 Ordering of batch normalization and dropout in TensorFlow?在 Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 一文中,作者指出,“we w
机器学习知识Q 问题们1.归一化层是加在哪儿的呢,它跟数据预处理里面的归一化可不一样吧?还有dropout又是加在哪儿的,啥时候用呢?答:归一化层一般加在全连接层FC和卷积层conv后面、激活层之前。dropout好像一般是在FC中使用,防止过拟合。以前在神经网络训练中,只是对输入层数据进行归一化处理,却没有在中间层进行归一化处理。要知道,虽然我们对输入数据进行了归一化处理,但是输入数据经过σ (
relu:其属于非线性激活函数的一种,同类型的函数还有sigmoid函数,tanh函数,softplus函数等等。对于ReLU函数,其公式即为个ReLU(x)=max(0, x),而sigmoid函数为sigmoid(x)= 1/(1+e^-x),而Softplus(x)=log(1+ex)。ReLU与softplus函数与前图中的传统sigmoid系激活函数相比,主要变化有三点:①单侧抑制 ②相
原创
2022-09-18 07:41:32
1312阅读
从这个总结看的出来,用sgd时,是每个mini_batch更新一次dropout,并且前向和反向传播都是会在经过dropout处理后的神经元上进行。比如这一层有10个神经元,有5个神经元停止工作,那前向和反向都会在另外5个神经元上进行。
转载
2017-07-30 18:13:00
115阅读
2评论
目录1、Dropout简介1.1、Dropout出现的原因1.2、什么是Dropout2、Dropout工作流程及使用2.1、Dropout具体工作流程2.2、Dropout在神经网络中的使用3、为什么说Dropout可以解决过拟合?4、Dropout在Keras中的源码分析5、思考6、总结1、Dropout简介1.1、Dropout出现的原因在...
原创
2021-08-13 09:20:30
191阅读
论文地址:https://arxiv.org/abs/1207.0580Dropout是hintion在他的文章Improving neural n
原创
2023-06-25 07:25:08
55阅读
1、dropout简述dropout是解决神经网络模型过拟合的一种常用方法。 dropout是指在神经网络训练过程中,以一定的概率随机丢弃神经元(注意是暂时丢弃),以减少神经元之间的依赖性,从而提高模型的泛化能力。dropout类似ensemble方法(组合多个模型,以获得更好的效果,使集成的模型具有更强的泛化能力) 区别在于:dropout在训练过程中每次迭代都会得到一个新模型,最终结果是多个模
转载
2023-11-02 08:57:05
156阅读
(4)Leaky ReLUReLU是将所有的负值设置为0,造成神经元节点死亡的情况。相反,Leaky ReLU是给所有负值赋予一个非零的斜率。优点:(1)神经元不会出现死亡的情况。(2)对于所有的输入,不管是大于等于0还是小于0,神经元不会饱和(3)由于Leaky ReLU线性、非饱和的形式,在SGD中能够快速收敛。(4)计算速度要快很多。Leaky ReLU函数只有线性关系,不需要指数计算,不管
转载
2024-03-18 17:44:02
1030阅读
cost function,一般得到的是一个 scalar-value,标量值; 执行 SGD 时,是最终的 cost function 获得的 scalar-value,关于模型的参数得到的;
1. 分类和预测评估:
准确率; 速度;健壮性;可规模性; 可解释性;
2. Data Augmentation
平移、旋转/翻转、缩放、加噪声
3. 溢出
矩阵求逆,W=PQ−1W = P/(Q+1e
转载
2016-10-30 01:39:00
326阅读
2评论
神经元按一定概率p失活 目的是为了防止过拟合,是正则化的手段之一 不会依赖局部特征 相当于训练了很多模型,进行了模型融合 输出的时候也要*p
转载
2020-12-30 09:58:00
240阅读
2评论
2018-12-06 15:01:54 Dropout:临时的抹去随机的神经元及其进行的关联计算。如下图所示 : Dropout的实现:Inverted Dropout 训练:假设每个神经元以keep_prop的概率被保留 预测:keep_prop设置为1,也就是不使用drop_out Dropou
转载
2018-12-06 15:50:00
128阅读
2评论
为什么说Dropout可以解决过拟合?
(1)取平均的作用: 先回到标准的模型即没有dropout,我们用相同的训练数据去训练5个不同的神经网络,一般会得到5个不同的结果,此时我们可以采用 “5个结果取均值”或者“多数取胜的投票策略”去决定最终结果。例如3个网络判断结果为数字9,那么很有可能真正的结果就是数字9,其它两个网络给出了错误结果。这种“综合起来取平均”的策略通常可以有效防止过拟合问题。
转载
2019-11-08 15:36:00
96阅读
2评论
Python内置(built-in)函数随着python解释器的运行而创建。在Python的程序中,你可以随时调用这些函数,不需要定义。最常见的内置函数是:
print("Hello World!")
常用函数
基本数据类型 type()
反过头来看看 dir() help() len()
词典
转载
2023-11-29 16:11:28
55阅读
背景介绍Neural Network之模型复杂度主要取决于优化参数个数与参数变化范围. 优化参数个数可手动调节, 参数变化范围可通过正则化技术加以限制. 本文从优化参数个数出发, 以dropout技术为例, 简要演示dropout参数丢弃比例对Neural Network模型复杂度的影响.算法特征①. 训练阶段以概率丢弃数据点; ②. 测试阶段保留所有数据点算法推导
以概率\(p\)对数据点\(x
转载
2023-07-24 20:15:15
253阅读
1、暂退法
暂退法在前向传播过程中,计算每⼀内部层的同时注⼊噪声,这已经成为训练神经⽹络的常⽤技术。这种⽅法之所以被称为暂退法,因为我们从表⾯上看是在训练过程中丢弃(dropout)⼀些神经元。 在整个训练过程的每⼀次迭代中,标准暂退法包括在计算下⼀层之前将当前层中的⼀些节点置零。
转载
2023-07-11 10:25:12
263阅读
正则表达式正则表达式为高级的文本模式匹配,抽取,与/或文本形式的搜索和替换功能提供了基础。正则表达式是一些由字符和特殊符号组成的字符串,它们描述了模式的重复或者表述多个字符。转义符\在正则表达式中,有很多有特殊意义的是元字符,比如\n和\s等,如果要在正则中匹配正常的"\n"而不是"换行符"就需要对""进行转义,变成’\’。在python中,无论是正则表达式,还是待匹配的内容,都是以字符串的形式出