前言最近在做实体抽取的时候,一篇文章大约有几千字,按照300字长度进行切割后,会生成数量不等的句子,若是句子少还行,句子多的情况下,则会对造成巨大的计算负担,因为一篇文章中存在关键词的段落是比较少的,为了减轻计算负担,让实体抽取模型仅对有实体的段落进行预测是最佳的选择。首先我是思考了前后各2个段落的方式进行句子筛选,然而偏偏有文章实体是出现在文章中间的,因此不得不考虑对段落进行筛选,采用关键词匹配
转载
2023-12-25 07:21:47
34阅读
任务背景利用LSTM(长短期记忆)网络结构训练小样本文本分类任务。 数据集及代码如下:LSTM文本分类数据集+代码+模型一、Model/TextRNN.py# coding: UTF-8
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
class Config(objec
转载
2024-06-18 05:37:11
106阅读
PyTorch是当前主流深度学习框架之一,其设计追求最少的封装、最直观的设计,其简洁优美的特性使得PyTorch代码更易理解,对新手非常友好。
本文为实战篇,介绍基于RNN的文本分类! 本文将构建和训练基本的字符级RNN(递归神经网络)来对单词进行分类。展示如何“从头开始”进行NLP(自然语言处理)建模的预处理数据,尤其是不使用众多NLP工具库提供的许多便利功能,因
转载
2023-12-19 07:11:13
67阅读
PyTorch实战LSTM新闻分类开源项目地址:https://github.com/ljyljy/Text_classification_of_THUCNews 数据集和代码都在其中,代码含有很多注解,可以跟随Debug看一下代码运行逻辑。 文章目录PyTorch实战LSTM新闻分类运行数据输入解读项目代码解读 运行你需要安装tensorboardX,安装方法:你需要先安装tensorboard
转载
2023-09-14 12:56:09
269阅读
循环神经网络实现文本情感分类之Pytorch中LSTM和GRU模块使用1. Pytorch中LSTM和GRU模块使用1.1 LSTM介绍LSTM和GRU都是由torch.nn提供通过观察文档,可知LSTM的参数,torch.nn.LSTM(input_size,hidden_size,num_layers,batch_first,dropout,bidirectional)input_size:输
转载
2023-11-15 06:16:25
136阅读
首先简单实现构造LSTM模型以及使用LSTM进行计算,代码如下import torch
import torch.nn as nn
class rnn(nn.Module):
def __init__(self,input_dim,output_dim,num_layer):
super(rnn,self).__init__()
self.layer1 = nn.LSTM(input_d
转载
2023-08-17 01:27:17
191阅读
lstm里,多层之间传递的是输出ht ,同一层内传递的细胞状态(即隐层状态)看pytorch官网对应的参数nn.lstm(*args,**kwargs),默认传参就是官网文档的列出的列表传过去。对于后面有默认值(官网在参数解释第一句就有if啥的,一般传参就要带赋值号了。)官网案例对应的就是前三个。input_size,hidden_size,num_layersParmerters:input_s
转载
2023-08-26 17:02:38
147阅读
数据以及代码的github地址 说明:训练速度使用cpu会很慢 # 目标:情感分类 # 数据集 Sentiment140, Twitter上的内容 包含160万条记录,0 : 负面, 2 : 中性, 4 : 正面 # 但是数据集中没有中性 # 1、整体流程: # 2、导入数据 # 3、查看数据信息 # 4、数据预处理: # &nb
转载
2023-11-27 20:10:01
100阅读
本文意在飞速使用LSTM,在数学建模中能更加快速。数据输入支持一维数据(单变量预测)或者为二维数据(多变量同时预测)。包含置信区间的计算。推荐使用 jupyter,因为可以保存训练步骤,重写画图代码更加便捷。完整代码下载链接数据输入 apidef data_basic():
"""2023美赛C:https://www.pancake2021.work/wp-content/uploads
转载
2023-08-11 20:43:10
257阅读
目录一、前期准备1.环境准备2.加载数据二、代码实战1.构建词典2.生成数据批次和迭代器3. 定义模型4. 定义实例5.定义训练函数与评估函数6.拆分数据集并运行模型三、使用测试数据集评估模型四、总结 ? 作者:[K同学啊]这是一个使用PyTorch实现的简单文本分类实战案例。在这个例子中,我们将使用AG News数据集进行文本分类。文本分类一般分为语料库、文本清晰、分词、文本向量化和建模这五步。
转载
2023-10-04 19:33:39
641阅读
使用RNN对MNIST手写数字进行分类。RNN和LSTM模型结构pytorch中的LSTM的使用让人有点头晕,这里讲述的是LSTM的模型参数的意义。1、加载数据集import torch
import torchvision
import torch.nn as nn
import torchvision.transforms as transforms
import torch.utils.d
转载
2024-06-24 06:51:10
116阅读
具体代码如下import torch
# 准备数据
index_chart = ['e', 'h', 'l', 'o']
x_data = [1, 0, 2, 2, 3]
y_data = [1, 0, 0, 3, 2]
one_hot_lookup = [[1, 0, 0, 0], # 设置一个索引表
[0, 1, 0, 0],
转载
2023-09-25 06:45:15
220阅读
LSTM是RNN的一种算法, 在序列分类中比较有用。常用于语音识别,文字处理(NLP)等领域。 等同于VGG等CNN模型在在图像识别领域的位置。 本篇文章是叙述LSTM 在MNIST 手写图中的使用。用来给初步学习RNN的一个范例,便于学习和理解LSTM . 先把工作流程图贴一下: 代码片段 :&nb
转载
2023-06-14 21:18:58
250阅读
这是一个造轮子的过程,但是从头构建LSTM能够使我们对体系结构进行更加了解,并将我们的研究带入下一个层次。 LSTM单元是递归神经网络深度学习研究领域中最有趣的结构之一:它不仅使模型能够从长序列中学习,而且还为长、短期记忆创建了一个数值抽象,可以在需要时相互替换。 在这篇文章中,我们不仅将介绍LSTM单元的体系结构,还将通过PyTorch手工实现它。 最后但最不重要的是,我们将展示如何对我们的实现
转载
2024-08-09 00:01:20
116阅读
# PyTorch LSTM情感分类入门指南
在最近几年,情感分析在自然语言处理(NLP)中不断增长的重要性。这篇文章将帮助你理解如何使用PyTorch实现LSTM(长短时记忆网络)来进行情感分类。以下是整个流程的概述。
## 整体流程
| 步骤 | 描述 |
| ---- | ---- |
| 1 | 数据准备:加载和预处理数据集 |
| 2 | 构建LSTM模型:定义模型结构 |
| 3
如何基于Keras和Tensorflow用LSTM进行时间序列预测编者按:本文将介绍如何基于Keras和Tensorflow,用LSTM进行时间序列预测。文章数据来自股票市场数据集,目标是提供股票价格的动量指标。GitHub:github.com/jaungiers/LSTM-Neural-Network-for-Time-Series-Prediction什么是LSTM?自提出后,传统神经网络架
一、BPR算法的原理:1、贝叶斯个性化排序(BPR)算法小结
2、Bayesian Personalized Ranking 算法解析及Python实现
二、算法中的注意点根据完整性和反对称性,优化目标的第一部分\[\prod_{u \in U}P(>_u|\theta) = \prod_{(u,i,j) \in (U \times I \times I)}P(i >_u j|\the
改文章转载于作者:weixin_40001805 仅供学习参考!!! 之前用bert一直都是根据keras-bert封装库操作的,操作非常简便(可参考苏剑林大佬博客当Bert遇上Keras:这可能是Bert最简单的打开姿势),这次想要来尝试一下基于pytorch的bert实践。最近pytorch大火,而目前很少有博客完整的给出pytorch-bert的应用代码,本文从最简单的中文文本分类入手,一步
转载
2024-07-25 10:16:57
25阅读
文章目录1 前言1.1 项目介绍2 情感分类介绍3 数据集4 实现4.1 数据预处理4.2 构建网络4.3 训练模型4.4 模型评估4.5 模型预测5 最后 1 前言Hi,大家好,这里是丹成学长,今天向大家介绍 一个项目基于GRU的 电影评论情感分析1.1 项目介绍其实,很明显这个项目和微博谣言检测是一样的,也是个二分类的问题,因此,我们可以用到学长之前提到的各种方法,即:朴素贝叶斯或者逻辑回归
转载
2024-06-14 12:09:29
37阅读
任务描述将循环任务(RNN)应用在图像分割上,需要对网络结构进行设计。任务选择:文本情感分类(正向,负向)选择的网络结构:LSTM语言:python框架选择:pytorch(主框架,构建网络结构) 其他辅助框架:pickle(python 的文件库。由于数据集的一部分放在pkl文件里,需要pickle库进行读取) tqdm (UI方面的库,用于添加进度条,方便观察计算的进度)数据集:aclImdb