灰色预测及其MATLAB实现(一)灰色预测是一种常规的预测手段,具有操作简便,所需数据量少等优点,一般只需有4个数据就可以进行预测。灰色预测是基于灰色系统理论的预测方法。灰色系统由我国著名学者邓聚龙教授在1982年提出,是相对于“白色模型”——完全信息透明的模型,和“黑色模型”——对信息一无所知的模型的模型概念。利用灰色系统解决的问题主要是具有不确定性的问题:信息具有模糊性,无法用数学方程精确刻画
学习笔记记录 文章目录学习笔记记录一、EEMD?二、EEMD的编程实现1.EMD和EEMD的对比2.工具解释总结   EEMD、VMD等类似于EMD分解方法的信号分解方法。“类EMD”方法.   我们总是希望把一个信号写成一系列的子信号的组合,然后加上一个性质不同的信号,所谓的残差信号或者剩余信号。一、EEMD?  为什么要提出EEMD?  解决EMD方法中的模态混叠现象。说到模态混叠,顾名思义就
最近写了个EMD-LSTM的代码,记录并分享一下,跟大家一起学习~EMD——经验模态分解介绍EMD其实就是一种信号分解的方法,其能将非平稳非线性数据转化为平稳现象数据,对于挖掘数据中隐藏的时序关系具有较大的辅助作用,EMD的计算步骤如下: 1、由时序数据的局部极大值、局部极小值确定数据的上包络线和下包络线,求出均值包络线,如式(1)。2、将减去得到,为第一个固有模态函数(Inherent Mode
重头戏来了。在以往的应用经验里,VMD方法在众多模态分解方法中可以说是非常好的。从催更力度上看,这个方法也是格外受关注。笔者决定加快进度快一些写完这个方法,十月份了有些同学要开始做毕设,希望这篇文能帮上忙。1. VMD(变分模态分解)的概念VMD(Variational Mode Decomposition)即变分模态分解,与2014年由Dragomiretskiy[1]等人提出,虽然它也叫模态分
转载 2024-05-07 21:26:01
904阅读
首先说一下,我为什么要写密码学的博客,由于hyperledger fabric中加密算法和哈希算贯穿整个项目,所以在分析加密那部分的代码之前,我将简单的介绍一下密码学的内容。密码学的内容我将写以下几篇博文1.初入密码学世界2.对称加密与公钥加密3.混合加密4.认证、密钥、随机数与技术应用5.PGP6.SSL/TLS7.区块链与密码学8.椭圆曲线加密废话不多说,我们进入初入密码学世界的内容一、概述1
% EMD 计算经验模式分解 % % % 语法 % % % IMF = EMD(X) % IMF = EMD(X,...,'Option_name',Option_value,...) % IMF = EMD(X,OPTS) % [IMF,ORT,NB_ITERATIONS] = EMD(...) % % % 描述 % % % IMF = EMD(X) X是一个实矢量,计算方法参考[1],计算结果
很多同学留言要EMD的代码,这篇文章就写一下吧。一、使用MATLAB自带函数如果你的MATLAB版本是2018a及更新版本,那么是可以直接调用emd函数的。以下代码在MATLAB2019a中编写,未在其他版本中测试。load('sinusoidalSignalExampleData.mat','X','fs') %载入数据 t = (0:length(X)-1)/fs; plot(t,X)
1、M = max(A)描述:返回向量 A 中的最大值,如果 A 为矩阵,则返回每列的最大值组成的行向量。参数:A 是待求最大值的向量或矩阵。输出:M 是向量 A 中的最大值行向量,如果 A 为矩阵,则返回每列的最大值组成的行向量。示例:M = max([1 2 3 4 5]) % 返回 52、M = max(A,[],dim)描述:返回矩阵 A 中指定维度 dim 的最大值组成的向量。参数
目录0.引言        1.数据说明2.实验分析2.1 DBN预测         2.2 EMD分解+DBN2.3 EMD+模拟退火+DBN0.引言        针对时间序列预测的自相关性导致
EMD-GRU预测 | MATLAB实现基于EMD-GRU时间序列预测EMD分解结合GRU门控循环单元)
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。?个人主页:​​Matlab科研工作室​​?个人信条:格物致知。更多Matlab仿真内容点击?​​智能优化算法​​  ​​神经网络预测​​ ​​雷达通信 ​​ ​​无线传感器​​​​信号处理​​ ​​图像处理​​ ​​路径规划​​ ​​元胞自动机​​ ​​无人机 ​​ ​​电力系统​​⛄ 内容介
原创 2022-12-17 13:35:48
788阅读
缩写为CEEMD的方法其实不止一种,包括互补集合经验模态分解方法[1](Complementary Ensemble Empirical Mode Decomposition,2010)和完全集合经验模态分解方法[2](Complete Ensemble Empirical Mode Decomposition,2011)。本文中所探讨的是上述第一种方法。1. CEEMD(互补集合经验模态分解)的
文章目录所解决的问题?背景所采用的方法?Model LearningMeta-Reinforcement Learningon Learned Models取得的效果?所出版信息?作者信息?参考链接 论文题目:Model-Based Reinforcement Learning via Meta-Policy Optimization所解决的问题?  提出一种不依赖于learned dynami
一、EMD及SVM简介1 引言时间序列预测是将预测目标的历史数据按照时间的顺序排列成为时间序列,然后分析它随时间的变化趋势,外推预测值。时间序列预测,尤其是非平稳、非线性时间序列的预测在经济、金融、工业、生物医学等领域中有着重要的应用。目前常用于时间序列预测的有回归模型和神经网络等方法,但是这些传统的单一预测方法难以在信息贫乏和不确定性条件下做出准确有效的预测?,这就使得必须根据时间序列波动趋势变化的规律和特点,找到一个鲁棒性强、预测精度高且实用的预测方法。经验模式分解(Empirical Mode
原创 2021-11-08 10:24:58
296阅读
一、EMD及SVM简介​1 引言​ 时间序列预测是将预测目标的历史数据按照时间的顺序排列成为时间序列,然后分析它随时间的变化趋势,外推预测值。时间序列预测,尤其是非平稳、非线性时间序列的预测在 经济、金融、工业、生物医学等领域中有着重要的应用。目前常用于时间序列预测的有回归模型和神经网络等方法,但是这些传统的单一预测方法难以在信息贫乏和不确定性条件下做出准确有效的预测?,这就使得必须根据时间序列
原创 2022-04-06 18:46:38
591阅读
一、EMD及SVM简介1 引言时间序列预测是将预测目标的历史数据按照时间的顺序排列成为时间序列,然后分析它随时间的变化趋势,外推预测值。时间序列预测,尤其是非平稳、非线性时间序列的预测在经济、金融、工业、生物医学等领域中有着重要的应用。目前常用于时间序列预测的有回归模型和神经网络等方法,但是这些传统的单一预测方法难以在信息贫乏和不确定性条件下做出准确有效的预测?,这就使得必须根据时间序列波动趋势变化的规律和特点,找到一个鲁棒性强、预测精度高且实用的预测方法。经验模式分解(Empirical Mode
原创 2021-11-08 10:25:02
281阅读
1 简介基于经验模式分解方法和长短期记忆网络(empirical model decomposition and long short-term memory network, EMD-LSTM)模型对水位数据进行预测.先采用中值滤波对数据序列进行预处理,然后对数据序列进行EMD分解,并对EMD分解的每个特征序列使用LSTM模型进行预测,最后叠加各个序列预测值,得到最终的预测结果.以南水北调工程某
原创 2022-01-05 18:33:05
1162阅读
1 模型针对非平稳,非线性时间序列变化复杂,难以用单一智能方法进行有效预测的问题,提出一种新的基于经验模式分解和支持向量回归的混合智能预测模型.经验模式分解能将非平稳时间序列按其内在的时间特征尺度自适应地分解为多个基本模式分量,根据这些分量各自趋势变化的剧烈程度选择不同的核函数进行支持向量回归预测,对各预测分量进行加权组合,得到原始序列的准确预测值.实证研究表明对于非平稳,非线性时间序列的预测,不
原创 2021-10-16 16:20:44
655阅读
一、概念法国中央科学研究院和美国RICE大学共同开发了时频分析工具箱(matlab emd) 是一款非常好用的时频分析计算工具,它是分析时变非平稳信号的有力工具,matlab 时频分析工具箱提供了时间域与频率域的联合分布信息,清楚地描述了信号频率随时间变化的关系。 其中主要含有四种函数:信号产生函数,可以产生不停类型的信号,如Chirp信号,bpsk信号等。时频分析函数,可以计算线性、Cohen类
下面的是matlabEMD的不带端点延拓的分解程序代码,07新出来的包含复数的emd函数(端点视作极值点)function [imf,ort,nbits] = emd3(varargin) [x,t,sd,sd2,tol,MODE_COMPLEX,ndirs,display_sifting,sdt,sd2t,r,imf,k,nbit,NbIt,MAXITERATIONS,FIXE,FIXE_H,
  • 1
  • 2
  • 3
  • 4
  • 5