本代码演示:
- pandas读取纯文本文件
- 读取csv文件
- 读取txt文件
- pandas读取xlsx格式excel文件
- pandas读取mysql数据表
1、读取纯文本文件
1.1 读取CSV,使用默认的标题行、逗号分隔符
userId | movieId | rating | timestamp | |
0 | 1 | 1 | 4.0 | 964982703 |
1 | 1 | 3 | 4.0 | 964981247 |
2 | 1 | 6 | 4.0 | 964982224 |
3 | 1 | 47 | 5.0 | 964983815 |
4 | 1 | 50 | 5.0 | 964982931 |
1.2 读取txt文件,自己指定分隔符、列名
pdate | pv | uv | |
0 | 2019-09-10 | 139 | 92 |
1 | 2019-09-09 | 185 | 153 |
2 | 2019-09-08 | 123 | 59 |
3 | 2019-09-07 | 65 | 40 |
4 | 2019-09-06 | 157 | 98 |
5 | 2019-09-05 | 205 | 151 |
6 | 2019-09-04 | 196 | 167 |
7 | 2019-09-03 | 216 | 176 |
8 | 2019-09-02 | 227 | 148 |
9 | 2019-09-01 | 105 | 61 |
2、读取excel文件
日期 | PV | UV | |
0 | 2019-09-10 | 139 | 92 |
1 | 2019-09-09 | 185 | 153 |
2 | 2019-09-08 | 123 | 59 |
3 | 2019-09-07 | 65 | 40 |
4 | 2019-09-06 | 157 | 98 |
5 | 2019-09-05 | 205 | 151 |
6 | 2019-09-04 | 196 | 167 |
7 | 2019-09-03 | 216 | 176 |
8 | 2019-09-02 | 227 | 148 |
9 | 2019-09-01 | 105 | 61 |
3、读取MySQL数据库
pdate | pv | uv | |
0 | 2019-09-10 | 139 | 92 |
1 | 2019-09-09 | 185 | 153 |
2 | 2019-09-08 | 123 | 59 |
3 | 2019-09-07 | 65 | 40 |
4 | 2019-09-06 | 157 | 98 |
5 | 2019-09-05 | 205 | 151 |
6 | 2019-09-04 | 196 | 167 |
7 | 2019-09-03 | 216 | 176 |
8 | 2019-09-02 | 227 | 148 |
9 | 2019-09-01 | 105 | 61 |