1.高斯函数
1. 一维高斯函数
对于任意的实数a,b,c,是以著名数学家Carl Friedrich Gauss的名字命名的。高斯的一维图是特征对称“bell curve”形状,a是曲线尖峰的高度,b是尖峰中心的坐标,c称为标准方差,表征的是bell钟状的宽度。
2. 二维高斯函数
A是幅值,x。y。是中心点坐标,σx σy是方差,图示如下,A = 1, xo = 0, yo = 0, σx = σy = 1
3.二维图像设计
说道“sigma表示的是标准差,如果标准差比较小,这是就相当于图像点运算,则平滑效果不明显;反之,标准差比较大,则相当于平均模板,比较模糊”,那么这么说可能很多人包括一开始的我并不是很理解,这是为什么呢,那么我们需要从高斯函数谈起:
我们要理解好这个图,横轴表示可能得取值x,竖轴表示概率分布密度F(x),那么不难理解这样一个曲线与x轴围成的图形面积为1。sigma(标准差)决定了这个图形的宽度,我给出下述结论:sigma越大,则图形越宽,尖峰越小,图形较为平缓;sigma越小,则图形越窄,越集中,中间部分也就越尖,图形变化比较剧烈。这其实很好理解,如果sigma也就是标准差越大,则表示该密度分布一定比较分散,由于面积为1,于是尖峰部分减小,宽度越宽(分布越分散);同理,当sigma越小时,说明密度分布较为集中,于是尖峰越尖,宽度越窄!
理解好上述结论之后,那么(一)中的结论当然也就顺理成章了,sigma越大,分布越分散,各部分比重差别不大,于是生成的模板各元素值差别不大,类似于平均模板;sigma越小,分布越集中,中间部分所占比重远远高于其他部分,反映到高斯模板上就是中心元素值远远大于其他元素值,于是自然而然就相当于中间值得点运算。
高斯函数在图像设计中应用
高斯噪声产生:图像常常受到一些随机误差的影响而退化,我们通常称这个退化为噪声。在图像的捕获、传输或者处理过程中都有可能产生、噪声,噪声可能是依赖于图像内容,可能无关。
噪声一般由其频率的特征来刻画,理想的噪声称为白噪声,高斯噪声就属于白噪声的一种,为白噪声的一个特例。服从高斯(正态)分布。