1、题目描述
给你二叉树的根结点 root ,请你将它展开为一个单链表:
- 展开后的单链表应该同样使用 TreeNode ,其中 right 子指针指向链表中下一个结点,而左子指针始终为 null 。
- 展开后的单链表应该与二叉树 先序遍历 顺序相同。
示例 1:
输入:root = [1,2,5,3,4,null,6]
输出:[1,null,2,null,3,null,4,null,5,null,6]
方案一 前序遍历和展开分开进行
解题思路:
首选我们可以先用一个list把前序遍历的结果存起来。 然后再对list中的元素的right指针进行操作即可。
代码如下
class Solution {
public void flatten(TreeNode root) {
List<TreeNode> list = new ArrayList<TreeNode>();
preorderTraversal(root, list);
int size = list.size();
for (int i = 1; i < size; i++) {
TreeNode prev = list.get(i - 1), curr = list.get(i);
prev.left = null;
prev.right = curr;
}
}
public void preorderTraversal(TreeNode root, List<TreeNode> list) {
if (root != null) {
list.add(root);
preorderTraversal(root.left, list);
preorderTraversal(root.right, list);
}
}
}方案二
可以发现展开的顺序其实就是二叉树的先序遍历。算法和 94 题中序遍历的 Morris 算法有些神似,我们需要两步完成这道题。
- 将左子树插入到右子树的地方
- 将原来的右子树接到左子树的最右边节点
- 考虑新的右子树的根节点,一直重复上边的过程,直到新的右子树为 null
可以看图理解下这个过程。
1
/ \
2 5
/ \ \
3 4 6
//将 1 的左子树插入到右子树的地方
1
\
2 5
/ \ \
3 4 6
//将原来的右子树接到左子树的最右边节点
1
\
2
/ \
3 4
\
5
\
6
//将 2 的左子树插入到右子树的地方
1
\
2
\
3 4
\
5
\
6
//将原来的右子树接到左子树的最右边节点
1
\
2
\
3
\
4
\
5
\
6
......
代码如下:
public void flatten(TreeNode root) {
while (root != null) {
//左子树为 null,直接考虑下一个节点
if (root.left == null) {
root = root.right;
} else {
// 找左子树最右边的节点
TreeNode pre = root.left;
while (pre.right != null) {
pre = pre.right;
}
//将原来的右子树接到左子树的最右边节点
pre.right = root.right;
// 将左子树插入到右子树的地方
root.right = root.left;
root.left = null;
// 考虑下一个节点
root = root.right;
}
}
}
















