python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。
1、Process
创建进程的类:Process([group[,target[,name[,args[,kwargs]]]]]),target表示调用对象,args表示调用对象的位置参数元组。kwargs表示调用对象的字典。name为别名。group实质上不使用。
方法:is_alive()、join([timeout])、run()、start()、terminate()。其中,Process以start()启动某个进程。
属性:authkey、daemon(要通过start()设置)、exitcode(进程在运行时为None、如果为–N,表示被信号N结束)、name、pid。其中daemon是父进程终止后自动终止,且自己不能产生新进程,必须在start()之前设置。
1.1 创建函数并将其作为单个进程

import multiprocessing
import time,os
def worker(interval):
    n = 5
    while n > 0:
        print("[%s] The time is %s" %(os.getpid(),time.ctime()))
        time.sleep(interval)
        n -= 1
if __name__ == "__main__":
    p = multiprocessing.Process(target = worker, args = (3,))
    p.start()
    print("主进程PID:%s" %os.getpid())
    print("p.pid:", p.pid)
    print("p.name:", p.name)
    print("p.is_alive:", p.is_alive())

执行结果:

主进程PID:17476
p.pid: 16476
p.name: Process-1
p.is_alive: True
[16476] The time is Thu Aug 31 16:23:04 2017
[16476] The time is Thu Aug 31 16:23:08 2017
[16476] The time is Thu Aug 31 16:23:11 2017
[16476] The time is Thu Aug 31 16:23:14 2017
[16476] The time is Thu Aug 31 16:23:17 2017

1.2 创建函数并将其作为多个进程

import multiprocessing
import time,os
def worker_1(interval):
    print("[%s] worker_1" % os.getpid())
    time.sleep(interval)
    print("[%s] end worker_1" % os.getpid())
def worker_2(interval):
    print("[%s] worker_2" % os.getpid())
    time.sleep(interval)
    print("[%s] end worker_2" % os.getpid())
def worker_3(interval):
    print("[%s] worker_3" % os.getpid())
    time.sleep(interval)
    print("[%s] end worker_3" % os.getpid())
if __name__ == "__main__":
    p1 = multiprocessing.Process(target = worker_1, args = (2,))
    p2 = multiprocessing.Process(target = worker_2, args = (3,))
    p3 = multiprocessing.Process(target = worker_3, args = (4,))
    p1.start()
    p2.start()
    p3.start()
    print("The number of CPU is: %s" %(multiprocessing.cpu_count()))
    for p in multiprocessing.active_children():
        print("child p.name:%s\tp.id:%s" %(p.name,p.pid))
    print("END!!!!!!!!!!!!!!!!!")

执行结果:

The number of CPU is: 2
child p.name:Process-2    p.id:15948
child p.name:Process-3    p.id:11792
child p.name:Process-1    p.id:2648
END!!!!!!!!!!!!!!!!!
[11792] worker_3
[2648] worker_1
[15948] worker_2
[2648] end worker_1
[15948] end worker_2
[11792] end worker_3

1.3:将进程定义为类

import multiprocessing
import time,os
class ClockProcess(multiprocessing.Process):
    def __init__(self, interval):
        multiprocessing.Process.__init__(self)
        self.interval = interval
    def run(self):
        n = 5
        while n > 0:
            print("[%s] the time is %s" %(os.getpid(),time.ctime()))
            time.sleep(self.interval)
            n -= 1
if __name__ == '__main__':
    p = ClockProcess(3)
    p.start()

注:进程p调用start()时,自动调用run()
执行结果:

[2128] the time is Thu Aug 31 16:38:30 2017
[2128] the time is Thu Aug 31 16:38:33 2017
[2128] the time is Thu Aug 31 16:38:36 2017
[2128] the time is Thu Aug 31 16:38:39 2017
[2128] the time is Thu Aug 31 16:38:42 2017

1.4 daemon程序对比结果
(1)不加daemon属性

import multiprocessing
import time,os
def worker(interval):
    print("[%s] work start:%s " %(os.getpid(),time.ctime()))
    time.sleep(interval)
    print("[%s] work end:%s " % (os.getpid(), time.ctime()))
if __name__ == "__main__":
    p = multiprocessing.Process(target = worker, args = (3,))
    p.start()
    print("主进程PID:%s" %os.getpid())

执行结果:
主进程PID:7724

[3728] work start:Thu Aug 31 16:44:14 2017 
[3728] work end:Thu Aug 31 16:44:17 2017

(2)加上daemon属性

import multiprocessing
import time,os
def worker(interval):
    print("[%s] work start:%s " %(os.getpid(),time.ctime()))
    time.sleep(interval)
    print("[%s] work end:%s " % (os.getpid(), time.ctime()))
if __name__ == "__main__":
    p = multiprocessing.Process(target = worker, args = (3,))
    p.daemon = True
    p.start()
    print("主进程PID:%s" %os.getpid())

执行结果:

主进程PID:13700

注意:因子进程设置了daemon属性(守护进程),主进程结束,它们就随着结束了。
(3)设置daemon执行完结束的方法

import multiprocessing
import time,os
def worker(interval):
    print("[%s] work start:%s " %(os.getpid(),time.ctime()))
    time.sleep(interval)
    print("[%s] work end:%s " % (os.getpid(), time.ctime()))
if __name__ == "__main__":
    p = multiprocessing.Process(target = worker, args = (3,))
    p.daemon = True
    p.start()
    p.join()
    print("主进程PID:%s" %os.getpid())

执行结果:

[9600] work start:Thu Aug 31 16:46:10 2017 
[9600] work end:Thu Aug 31 16:46:13 2017 
主进程PID:14184

注意:p.join()为主进程等待p进程结束后再往下执行,下面有详细说明
2、Lock
当多个进程需要访问共享资源的时候,Lock可以用来避免访问的冲突。

import multiprocessing
import sys, os
def worker_with(lock, f):
    with lock:
        with open(f, 'a+') as fs:
            n = 10
            while n > 1:
                fs.write("[%s] Lockd acquired via with\n" %os.getpid())
                n -= 1
def worker_no_with(lock, f):
    lock.acquire()
    try:
        with open(f, 'a+') as fs:
            n = 10
            while n > 1:
                fs.write("[%s] Lock acquired directly\n" %os.getpid())
                n -= 1
    finally:
        lock.release()
if __name__ == "__main__":
    lock = multiprocessing.Lock()
    f = "file.txt"
    w = multiprocessing.Process(target=worker_with, args=(lock, f))
    nw = multiprocessing.Process(target=worker_no_with, args=(lock, f))
    w.start()
    nw.start()
    print("主进程PID:%s" % os.getpid())

执行结果(输出文件)

[1872] Lockd acquired via with
[1872] Lockd acquired via with
[1872] Lockd acquired via with
[1872] Lockd acquired via with
[1872] Lockd acquired via with
[1872] Lockd acquired via with
[1872] Lockd acquired via with
[1872] Lockd acquired via with
[1872] Lockd acquired via with
[1512] Lock acquired directly
[1512] Lock acquired directly
[1512] Lock acquired directly
[1512] Lock acquired directly
[1512] Lock acquired directly
[1512] Lock acquired directly
[1512] Lock acquired directly
[1512] Lock acquired directly
[1512] Lock acquired directly

3. Semaphore
Semaphore用来控制对共享资源的访问数量,例如池的最大连接数。

import multiprocessing
import time,os
def worker(s, i):
    s.acquire()
    print("[%s]\t%s acquire" %(os.getpid(),multiprocessing.current_process().name))
    time.sleep(i)
    print("[%s]\t%s release" %(os.getpid(),multiprocessing.current_process().name))
    s.release()
if __name__ == "__main__":
    s = multiprocessing.Semaphore(2)
    for i in range(5):
        p = multiprocessing.Process(target = worker, args=(s, i*2))
        p.start()
    print("主进程PID:%s" % os.getpid())

执行结果:

主进程PID:11428
[12276]   Process-2 acquire
[6352]    Process-4 acquire
[12276]   Process-2 release
[3948]    Process-3 acquire
[6352]    Process-4 release
[9400]    Process-5 acquire
[3948]    Process-3 release
[1392]    Process-1 acquire
[1392]    Process-1 release
[9400]    Process-5 release


4、Event
Event用来实现进程间同步通信。

import multiprocessing
import time,os
def wait_for_event(e):
    print("wait_for_event: starting")
    e.wait()
    print("wairt_for_event: e.is_set() -> %s" %str(e.is_set()))
def wait_for_event_timeout(e, t):
    print("wait_for_event_timeout:starting")
    e.wait(t)
    print("wait_for_event_timeout:e.is_set -> %s" %str(e.is_set()))
if __name__ == "__main__":
    e = multiprocessing.Event()
    w1 = multiprocessing.Process(name = "block",
            target = wait_for_event,
            args = (e,))
    w2 = multiprocessing.Process(name = "non-block",
            target = wait_for_event_timeout,
            args = (e, 2))
    w1.start()
    w2.start()
    time.sleep(3)
    e.set()
    print("主进程PID:%s" % os.getpid())
    print("main: event is set")

执行结果:

wait_for_event: starting
wait_for_event_timeout:starting
wait_for_event_timeout:e.is_set -> False
wairt_for_event: e.is_set() -> True
主进程PID:9444
main: event is set

5、Queue
Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。
get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常。Queue的一段示例代码:
import multiprocessing

def writer_proc(q):
    try:
        q.put(1, block = False)
    except:
        pass
def reader_proc(q):
    try:
        print(q.get(block = False))
    except:
        pass
if __name__ == "__main__":
    q = multiprocessing.Queue()
    writer = multiprocessing.Process(target=writer_proc, args=(q,))
    writer.start()
    reader = multiprocessing.Process(target=reader_proc, args=(q,))
    reader.start()
    reader.join()
    writer.join()

执行结果:

1


6、Pipe
Pipe方法返回(conn1,conn2)代表一个管道的两个端。Pipe方法有duplex参数,如果duplex参数为True(默认值),那么这个管道是全双工模式,也就是说conn1和conn2均可收发。duplex为False,conn1只负责接受消息,conn2只负责发送消息。
send和recv方法分别是发送和接受消息的方法。例如,在全双工模式下,可以调用conn1.send发送消息,conn1.recv接收消息。如果没有消息可接收,recv方法会一直阻塞。如果管道已经被关闭,那么recv方法会抛出EOFError。

import multiprocessing
import time
def proc1(pipe):
    while True:
        for i in range(10):
            print("send: %s" %(i))
            pipe.send(i)
            time.sleep(1)
def proc2(pipe):
    while True:
        print("proc2 rev:", pipe.recv())
        time.sleep(1)
def proc3(pipe):
    while True:
        print("PROC3 rev:", pipe.recv())
        time.sleep(1)
if __name__ == "__main__":
    pipe = multiprocessing.Pipe()
    p1 = multiprocessing.Process(target=proc1, args=(pipe[0],))
    p2 = multiprocessing.Process(target=proc2, args=(pipe[1],))

    p1.start()
    p2.start()
    p1.join()
    p2.join()

7、Pool
在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。
Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。
7.1 使用进程池(非阻塞)

import multiprocessing
import time

def func(msg):
    print("msg:", msg)
    time.sleep(3)
    print("end")

if __name__ == "__main__":
    pool = multiprocessing.Pool(processes = 3)
    for i in range(4):
        msg = "hello %d" %(i)
        pool.apply_async(func, (msg, ))   # 维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去

    print("Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~")
    pool.close()
    pool.join()   # 调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
    print("Sub-process(es) done.")

执行结果:

Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~
msg: hello 0
msg: hello 1
msg: hello 2
end
msg: hello 3
end
end
end
Sub-process(es) done.

函数解释:
apply_async(func[,args[,kwds[,callback]]])它是非阻塞,apply(func[,args[,kwds]])是阻塞的(理解区别,看例1例2结果区别)
close()关闭pool,使其不在接受新的任务。
terminate()结束工作进程,不在处理未完成的任务。
join()主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。
执行说明:创建一个进程池pool,并设定进程的数量为3,xrange(4)会相继产生四个对象[0, 1, 2, 4],四个对象被提交到pool中,因pool指定进程数为3,所以0、1、2会直接送到进程中执行,当其中一个执行完事后才空出一个进程处理对象3,所以会出现输出“msg: hello 3”出现在"end"后。因为为非阻塞,主函数会自己执行自个的,不搭理进程的执行,所以运行完for循环后直接输出“mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~”,主程序在pool.join()处等待各个进程的结束。
7.2 使用进程池(阻塞)

import multiprocessing
import time

def func(msg):
    print("msg:", msg)
    time.sleep(3)
    print("end")

if __name__ == "__main__":
    pool = multiprocessing.Pool(processes = 3)
    for i in range(4):
        msg = "hello %d" %(i)
        pool.apply(func, (msg, ))   # 维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去

    print("Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~")
    pool.close()
    pool.join()   #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
    print("Sub-process(es) done.")

执行结果:

msg: hello 0
end
msg: hello 1
end
msg: hello 2
end
msg: hello 3
end
Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~
Sub-process(es) done.


7.3 使用进程池,并关注结果

import multiprocessing
import time
def func(msg):
    print("msg:", msg)
    time.sleep(3)
    print("end")
    return "done" + msg

if __name__ == "__main__":
    pool = multiprocessing.Pool(processes=4)
    result = []
    for i in range(3):
        msg = "hello %d" %(i)
        result.append(pool.apply_async(func, (msg, )))
    pool.close()
    pool.join()
    for res in result:
        print(":::", res.get())
    print("Sub-process(es) done.")

执行结果:

msg: hello 0
msg: hello 1
msg: hello 2
end
end
end
::: donehello 0
::: donehello 1
::: donehello 2
Sub-process(es) done.

7.4 使用多个进程池

import multiprocessing
import os, time, random


def Lee():
    print
    "\nRun task Lee-%s" % (os.getpid())  # os.getpid()获取当前的进程的ID
    start = time.time()
    time.sleep(random.random() * 10)  # random.random()随机生成0-1之间的小数
    end = time.time()
    print('Task Lee, runs %0.2f seconds.' % (end - start))


def Marlon():
    print("\nRun task Marlon-%s" % (os.getpid()))
    start = time.time()
    time.sleep(random.random() * 40)
    end = time.time()
    print('Task Marlon runs %0.2f seconds.' % (end - start))


def Allen():
    print("\nRun task Allen-%s" % (os.getpid()))
    start = time.time()
    time.sleep(random.random() * 30)
    end = time.time()
    print('Task Allen runs %0.2f seconds.' % (end - start))


def Frank():
    print("\nRun task Frank-%s" % (os.getpid()))
    start = time.time()
    time.sleep(random.random() * 20)
    end = time.time()
    print('Task Frank runs %0.2f seconds.' % (end - start))


if __name__ == '__main__':
    function_list = [Lee, Marlon, Allen, Frank]
    print("parent process %s" % (os.getpid()))

    pool = multiprocessing.Pool(4)
    for func in function_list:
        pool.apply_async(func)  # Pool执行函数,apply执行函数,当有一个进程执行完毕后,会添加一个新的进程到pool中
    print('Waiting for all subprocesses done...')
    pool.close()
    pool.join()  # 调用join之前,一定要先调用close() 函数,否则会出错, close()执行后不会有新的进程加入到pool,join函数等待素有子进程结束
    print('All subprocesses done.')

执行结果:

parent process 10992
Waiting for all subprocesses done...

Run task Marlon-12828

Run task Allen-12880

Run task Frank-784
Task Lee, runs 7.22 seconds.
Task Frank runs 11.81 seconds.
Task Marlon runs 14.34 seconds.
Task Allen runs 21.21 seconds.
All subprocesses done.