腾讯曾经出过这样一道面试题

   给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在这40亿个数中。

   拿到这个题目,我们首先想到的是遍历这40亿的数字,然后一个一个找。显然是行不通的。因为这40亿个数放到内存中,大约需要16G内存。

   如果我们把它转换成位图处理,那么就好处理多了。我们可以把一个整形再细分一下,一个int类型就可以编程32个位,每一位用0,1表示当前这个位置上是否存有值,同样是利用哈希存储的方法。只是这样存储的话就可以减少很多的空间了,例如上题使用的内存就可以从16G降到500M的内存。空间的使用率减少了不止一点。

     大家可以根据我这个方法实现上面的代码,今天我主要介绍的是布隆过滤器,因为布隆过滤器也要用到位图(bitmap),位图实现思想:

     1.把一个int类型变成32个bits。

     2.把它们全部初始化为0。

     3.如果当前位上有值,把0置成1。

下面我给出位图的实现代码:

BitMap.h中

#include <vector>

class BitMap
{
public:
	BitMap(size_t size = 0)
		:_size(0)
	{
		//用resize开辟空间,_a中的值会被初始化为0

		//加1为了让值全部能放到数组中,假如有36个数,36/32=1余4,而
		//多开的那个空间就保证了这4个数能放下

		//_a.resize(size/32+1);和下面的代码一个性质,只不过用移位运算符比除法的效率高
		_a.resize((size >> 5) + 1);
	}
	//插入
	void Set(size_t x)
	{
		size_t index = x >> 5;
		size_t num = x % 32;
		//当前位置如果等于0,没有值,可以插入
		if (!(_a[index] & (1 << num)))
		{
			_a[index] |= (1 << num);//当前位置置1
			++_size;
		}
	}
	//删除
	void Reset(size_t x)
	{
		size_t index = x >> 5;
		size_t num = x % 32;
		//当前位置为1,有值,可以删除
		if (_a[index] & (1 << num))
		{
			_a[index] &= ~(1 << num);//当前位置置0
			--_size;
		}
	}
	//判断是否有值
	bool BitMapTest(size_t x)
	{
		size_t index = x >> 5;
		size_t num = x % 32;
		if (_a[index] & (1 << num))
		{
			return true;
		}
		return false;
	}
	void Resize(size_t size)
	{
		_a.resize(size);
	}
protected:
	vector<size_t> _a;
	size_t _size;
};

    如果想判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定。链表,树等等数据结构都是这种思路. 但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢。不过世界上还有一种叫作散列表(又叫哈希表,Hash table)的数据结构。它可以通过一个Hash函数将一个元素映射成一个位阵列(Bit Array)中的一个点。这样一来,我们只要看看这个点是不是 1 就知道可以集合中有没有它了。这就是布隆过滤器的基本思想。

       Hash面临的问题就是冲突。假设 Hash 函数是良好的,如果我们的位阵列长度为 m 个点,那么如果我们想将冲突率降低到例如 1%, 这个散列表就只能容纳 m/100 个元素。显然这就不叫空间有效了(Space-efficient)。解决方法也简单,就是使用多个 Hash,如果它们有一个说元素不在集合中,那肯定就不在。如果它们都说在,虽然也有一定可能性它们在说谎,不过直觉上判断这种事情的概率是比较低的。

优点

相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。布隆过滤器存储空间和插入/查询时间都是常数。另外, Hash 函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。

布隆过滤器可以表示全集,其它任何数据结构都不能;

k 和 m 相同,使用同一组 Hash 函数的两个布隆过滤器的交并差运算可以使用位操作进行。

缺点

但是布隆过滤器的缺点和优点一样明显。误算率(False Positive)是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣。

另外,一般情况下不能从布隆过滤器中删除元素. 我们很容易想到把位列阵变成整数数组,每插入一个元素相应的计数器加1, 这样删除元素时将计数器减掉就可以了。然而要保证安全的删除元素并非如此简单。首先我们必须保证删除的元素的确在布隆过滤器里面. 这一点单凭这个过滤器是无法保证的。另外计数器回绕也会造成问题。

下面给出布隆过滤器的实现代码:

仿函数实现,我用了5个仿函数,它们的实现我是看http://www.cnblogs.com/-clq/archive/2012/05/31/2528153.html这里面实现的,他的实现比较好,能更好的避免哈希冲突。

commom.h中

#pragma once

#include <string>
size_t NewSize(size_t size)
{
	// 使用素数表对齐做哈希表的容量,降低哈希冲突
	const int _PrimeSize = 28;
	static const unsigned long _PrimeList[_PrimeSize] =
	{
		53ul, 97ul, 193ul, 389ul, 769ul,
		1543ul, 3079ul, 6151ul, 12289ul, 24593ul,
		49157ul, 98317ul, 196613ul, 393241ul, 786433ul,
		1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul,
		50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul,
		1610612741ul, 3221225473ul, 4294967291ul
	};
	for (int i = 0; i < _PrimeSize; i++)
	{
		if (_PrimeList[i]>size)
		{
			return _PrimeList[i];//按照素数表来设置容量大小
		}
	}
	//当需要的容量超过素数表的最大容量,我们就按照最大的来扩容
	return _PrimeList[_PrimeSize - 1];
}
template <class T>
struct __HashFunc1
{
	size_t BKDRHash(const T *str)
	{
		register size_t hash = 0;
		while (size_t ch = (size_t)*str++)
		{
			hash = hash * 131 + ch;   
		}
		return hash;
	}
	size_t operator()(const T& key)
	{
		return BKDRHash(key.c_str());
	}
};
template <class T>
struct __HashFunc2
{
	size_t SDBMHash(const T *str)
	{
		register size_t hash = 0;
		while (size_t ch = (size_t)*str++)
		{
			hash = 65599 * hash + ch;
			//hash = (size_t)ch + (hash << 6) + (hash << 16) - hash;  
		}
		return hash;
	}
	size_t operator()(const T& key)
	{
		return SDBMHash(key.c_str());
	}
};
template <class T>
struct __HashFunc3
{
	size_t RSHash(const T *str)
	{
		register size_t hash = 0;
		size_t magic = 63689;
		while (size_t ch = (size_t)*str++)
		{
			hash = hash * magic + ch;
			magic *= 378551;
		}
		return hash;
	}
	size_t operator()(const T& key)
	{
		return RSHash(key.c_str());
	}
};

template <class T>
struct __HashFunc4
{
	size_t APHash(const T *str)
	{
		register size_t hash = 0;
		size_t ch;
		for (long i = 0; ch = (size_t)*str++; i++)
		{
			if ((i & 1) == 0)
			{
				hash ^= ((hash << 7) ^ ch ^ (hash >> 3));
			}
			else
			{
				hash ^= (~((hash << 11) ^ ch ^ (hash >> 5)));
			}
		}
		return hash;
	}
	size_t operator()(const T& key)
	{
		return APHash(key.c_str());
	}
};
template <class T>
struct __HashFunc5
{
	size_t JSHash(const T *str)
	{
		if (!*str)        // 这是由本人添加,以保证空字符串返回哈希值0  
			return 0;
		register size_t hash = 1315423911;
		while (size_t ch = (size_t)*str++)
		{
			hash ^= ((hash << 5) + ch + (hash >> 2));
		}
		return hash;
	}
	size_t operator()(const T& key)
	{
		return JSHash(key.c_str());
	}
};

我使用了5个Hash函数,可以降低哈希冲突。大家视情况而定,自己设置哈希函数的个数。

BoolmFilter.h中

#pragma once

#include<string>
#include "BitMap.h"
#include "common.h"
template<class T = string,
	class HashFunc1=__HashFunc1<T>,
	class HashFunc2 = __HashFunc2<T>,
	class HashFunc3 = __HashFunc3<T>,
	class HashFunc4 = __HashFunc4<T>,
	class HashFunc5 = __HashFunc5<T>
>
class BoolmFilter
{
public:
	BoolmFilter(size_t capatity = 0)
	{
		_capatity = NewSize(capatity);
		_bm.Resize(_capatity);
	}
	void Set(const T& key)
	{
		size_t index1 = HashFunc1()(key);
		size_t index2 = HashFunc2()(key);
		size_t index3 = HashFunc3()(key);
		size_t index4 = HashFunc4()(key);
		size_t index5 = HashFunc5()(key);

		_bm.Set(index1%_capatity);
		_bm.Set(index2%_capatity);
		_bm.Set(index3%_capatity);
		_bm.Set(index4%_capatity);
		_bm.Set(index5%_capatity);
	}
	bool Test(const T& key)
	{
		size_t index1 = HashFunc1()(key);
		if (!_bm.BitMapTest(index1%_capatity))
		{
			return false;
		}
		size_t index2 = HashFunc2()(key);
		if (!_bm.BitMapTest(index2%_capatity))
		{
			return false;
		}
		size_t index3 = HashFunc3()(key);
		if (!_bm.BitMapTest(index3%_capatity))
		{
			return false;
		}
		size_t index4 = HashFunc4()(key);
		if (!_bm.BitMapTest(index4%_capatity))
		{
			return false;
		}
		size_t index5 = HashFunc5()(key);
		if (!_bm.BitMapTest(index5%_capatity))
		{
			return false;
		}
		return true;
	}
protected:
	BitMap _bm;
	size_t _capatity;
};

test.cpp中

#include <iostream>
using namespace std;
#include "BoolmFilter.h"

void BoolTest()
{
	BoolmFilter<>bf(100);
	bf.Set("she is girl");
	bf.Set("我是好人");
	bf.Set("chive/2012/05/31/2528153.html");
	cout << bf.Test("she is girl") << endl;
	cout << bf.Test("我是好人") << endl;
	cout << bf.Test("chive/2012/05/31/2528153.html") << endl;
}
int main()
{
	BoolTest();
	system("pause");
	return 0;
}

   希望能帮到大家,有什建议可以提出,谢谢!