Python中的Queue对象提供了对线程同步的支持,使用queue对象可以实现多生产者和多消费者形成的先进先出的队列。

每个生产者将数据放入队列,而每个消费者依次从队列中取出数据。

# coding:utf-8
import threading,time,Queue

class Producer(threading.Thread):
    def __init__(self,threadname):
        threading.Thread.__init__(self,name=threadname)
    def run(self):
        global queue
        queue.put(self.getName())
        print  self.getName(),'put',self.getName(),'to queue'
class Consumer(threading.Thread):
    def __init__(self,threadname):
        threading.Thread.__init__(self,name=threadname)
    def run(self,threadname):
        global queue
        print self.getName(),'get',queue.get(),'from queue'
#生成队列对象
queue = Queue.Queue()
#生产者对象列表
plist = []
#消费者对象列表
clist = []
for i in range(10):
    p = Producer('Producer' + str(i))
    plist.append(p)
for i in range(10):
    c = Consumer('Consumer' + str(i))
#运行生产者
for i in plist:
    i.start()
    i.join()
#运行消费者
for i in clist:
    i.start()
    i.join()

运行结果:

Producer0 put Producer0 to queue
Producer1 put Producer1 to queue
Producer2 put Producer2 to queue
Producer3 put Producer3 to queue
Producer4 put Producer4 to queue
Producer5 put Producer5 to queue
Producer6 put Producer6 to queue
Producer7 put Producer7 to queue
Producer8 put Producer8 to queue
Producer9 put Producer9 to queue

Process finished with exit code 0

另外,可以使用Stackless Python实现,它只是一个Python的修改版本,对多线程编程有更好的支持。如果对多线程应用有较高的要求,则可以考虑使用Stackless Python来完成。

Stackless官方网站:https://bitbucket.org/stackless-dev/stackless/wiki/Home

同样实现生产者消费者案例代码如下:

import stackless,Queue

def Producer(i):
    global queue
    queue.put(i)
    print "Producer",i,'add',i

def Consumer():
    global  queue
    i = queue.get()
    print 'Consumer',i, 'get',i

queue = Queue.Queue()
for i in range(10):
    stackless.tasklet(Producer)(i)
for i in range(10):
    stackless.tasklet(Consumer)()
stackless.run()

执行结果:

Producer 0 add 0
Producer 1 add 1
Producer 2 add 2
Producer 3 add 3
Producer 4 add 4
Producer 5 add 5
Producer 6 add 6
Producer 7 add 7
Producer 8 add 8
Producer 9 add 9
Consumer 0 get 0
Consumer 1 get 1
Consumer 2 get 2
Consumer 3 get 3
Consumer 4 get 4
Consumer 5 get 5
Consumer 6 get 6
Consumer 7 get 7
Consumer 8 get 8
Consumer 9 get 9

Process finished with exit code 0

Stackless Python 提供了对微线程的支持,微线程是轻量级的线程,与前面的Thread相比,占用资源更少。