从数据集获取有趣信息的方法:常用的两种分别是频繁项集和关联规则。

FP-growth虽然可以高效的发现频繁项集,但是不能用于发现关联规则。

FP-growth算法只需要对数据库进行两次扫描,速度要比Apriori算法块。

FP-growth发现频繁项集的基本过程

① 构建FP树

  第一遍 对所有元素项的出现次数进行技术,用来统计出现的频率。

  第二遍 只考虑哪些频繁元素

② 从FP树种挖掘频繁项集

从FP树种抽取频繁项集的三个基本步骤:

① 从FP树种获得条件模式基

② 利用条件模式基,构建一个条件FP树

③ 迭代重复步骤(1)步骤(2),知道树包含一个元素项为止。

条件模式基:是以查找元素项为结尾的路径集合。

#coding:utf-8

#FP数的类定义
class treeNode:
    def __init__(self, nameValue, numOccur, parentNode):
        self.name = nameValue   #存放节点名字的变量
        self.count = numOccur   #计数值
        self.nodeLink = None   #用于链接相似的元素项
        self.parent = parentNode      #父变量parent来指向挡墙节点的父节点
        self.children = {}  #空字典用来存放节点的子节点

    #对count变量增加给定值
    def inc(self, numOccur):
        self.count += numOccur
	#用于将数以文本形式展示,非必要,但是便于调试        
    def disp(self, ind=1):
        print '  '*ind, self.name, ' ', self.count
        for child in self.children.values():
            child.disp(ind+1)
#构建FP树
def createTree(dataSet, minSup=1): 
	#使用数据集以及最小支持度作为参赛来构建FP树
    headerTable = {}  #创建空的头指针表
    #遍历数据集两次
    for trans in dataSet:#first pass counts frequency of occurance
        for item in trans:
            headerTable[item] = headerTable.get(item, 0) + dataSet[trans]
    for k in headerTable.keys():  #删除出现次数少于minsup的项
        if headerTable[k] < minSup: 
            del(headerTable[k])
    freqItemSet = set(headerTable.keys())
    if len(freqItemSet) == 0: return None, None  #如果所有项都不频繁,就不进行下一步了
    for k in headerTable:
        headerTable[k] = [headerTable[k], None] #reformat headerTable to use Node link 
    retTree = treeNode('Null Set', 1, None) #create tree
    for tranSet, count in dataSet.items():  #go through dataset 2nd time
        localD = {}
        for item in tranSet:  #put transaction items in order
            if item in freqItemSet:
                localD[item] = headerTable[item][0]
        if len(localD) > 0:
            orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: p[1], reverse=True)]
            updateTree(orderedItems, retTree, headerTable, count)#populate tree with ordered freq itemset
    return retTree, headerTable #return tree and header table

def updateTree(items, inTree, headerTable, count):
    if items[0] in inTree.children:#测试事务中的第一个元素是否作为子节点存在,如果存在,更新该元素项的计数
        inTree.children[items[0]].inc(count) 
    else:   #如果不存在,则创建一个新的treeNode,并将其作为一个子节点添加到树中
        inTree.children[items[0]] = treeNode(items[0], count, inTree)
        if headerTable[items[0]][1] == None: #update header table 
            headerTable[items[0]][1] = inTree.children[items[0]]
        else:
            updateHeader(headerTable[items[0]][1], inTree.children[items[0]]) #更新头指针表
    if len(items) > 1:#不断迭代调用自身,每次调用时会去掉列表中的第一个元素
        updateTree(items[1::], inTree.children[items[0]], headerTable, count) 
        
def updateHeader(nodeToTest, targetNode):   #它确保节点链接指向树中该元素项的每一个实例
    while (nodeToTest.nodeLink != None):    #Do not use recursion to traverse a linked list!
        nodeToTest = nodeToTest.nodeLink
    nodeToTest.nodeLink = targetNode
        
def ascendTree(leafNode, prefixPath): #ascends from leaf node to root
    if leafNode.parent != None:
        prefixPath.append(leafNode.name)
        ascendTree(leafNode.parent, prefixPath)
    
def findPrefixPath(basePat, treeNode): #treeNode comes from header table
    condPats = {}
    while treeNode != None:
        prefixPath = []
        ascendTree(treeNode, prefixPath)
        if len(prefixPath) > 1: 
            condPats[frozenset(prefixPath[1:])] = treeNode.count
        treeNode = treeNode.nodeLink
    return condPats

#递归查找频繁项集
def mineTree(inTree, headerTable, minSup, preFix, freqItemList):
    bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: p[1])]# 对头指针表中的元素项按照其出现频率进行排序
    for basePat in bigL:  #start from bottom of header table
        newFreqSet = preFix.copy()
        newFreqSet.add(basePat)
        freqItemList.append(newFreqSet)
        condPattBases = findPrefixPath(basePat, headerTable[basePat][1])
        myCondTree, myHead = createTree(condPattBases, minSup)
        if myHead != None: #如果树中有元素项,递归调用mineTree()函数
            mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList)

def loadSimpDat():
    simpDat = [['r', 'z', 'h', 'j', 'p'],
               ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
               ['z'],
               ['r', 'x', 'n', 'o', 's'],
               ['y', 'r', 'x', 'z', 'q', 't', 'p'],
               ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
    return simpDat

def createInitSet(dataSet):
    retDict = {}
    for trans in dataSet:
        retDict[frozenset(trans)] = 1
    return retDict

import twitter
from time import sleep
import re

def textParse(bigString):
    urlsRemoved = re.sub('(http:[/][/]|www.)([a-z]|[A-Z]|[0-9]|[/.]|[~])*', '', bigString) 
	 #re.sub使用给定的替换内容将匹配模式的子字符串  
    listOfTokens = re.split(r'\W*', urlsRemoved) #通过正则表达式将字符串分离
    return [tok.lower() for tok in listOfTokens if len(tok) > 2]  #列表推导式生成新列表

#处理认证然后创建一个空列表
def getLotsOfTweets(searchStr):
    CONSUMER_KEY = 'get when you create an app'
    CONSUMER_SECRET = 'get when you create an app'
    ACCESS_TOKEN_KEY = 'get from Oauth,apecific to a user'
    ACCESS_TOKEN_SECRET = 'get from Oauth,apecific to a user'
    api = twitter.Api(consumer_key=CONSUMER_KEY, consumer_secret=CONSUMER_SECRET,
                      access_token_key=ACCESS_TOKEN_KEY, 
                      access_token_secret=ACCESS_TOKEN_SECRET)
    #you can get 1500 results 15 pages * 100 per page
    resultsPages = []
    for i in range(1,15):
        print "fetching page %d" % i
        searchResults = api.GetSearch(searchStr, per_page=100, page=i)
        resultsPages.append(searchResults)
        sleep(6)
    return resultsPages

#构建FP树并对其进行挖掘,最后返回所有频繁项集组成的列表
def mineTweets(tweetArr, minSup=5):
    parsedList = []
    for i in range(14):
        for j in range(100):
            parsedList.append(textParse(tweetArr[i][j].text))
    initSet = createInitSet(parsedList)
    myFPtree, myHeaderTab = createTree(initSet, minSup)
    myFreqList = []
    mineTree(myFPtree, myHeaderTab, minSup, set([]), myFreqList)
    return myFreqList