//残缺棋盘的问题要求用3个方格的板(三格板)(triominoes)覆盖残缺棋盘。

//在此覆盖中,两个三格板不能重叠,三格板不能覆盖残缺方格,但必须覆盖其他所有的方格。

//在这种限制条件下,所需要的三格板总数为(2^(2k-1))/3。

//可以验证(2^(2k-1))/3是一个整数。k为0的残缺棋盘很容易被覆盖,

//因为它没有非残缺的方格,用于覆盖的三格板的数目为0。当k=1时,

//正好存在3个非残缺的方格,并且这三个方格某一方 向的三格板来覆盖。


//小残缺棋盘

//  1

//1 1


//2 

//2 2


//3 3

//  3


//4 4

//4

int amount = 0;
int array[16][16] = { 0 };
void Print(int size)
{
	for (int i = 0; i < size; ++i)
	{
		for (int j = 0; j < size; ++j)
			printf("%-3d ", array[i][j]);
		cout << endl;
	}
	cout << endl;
}
void tileBoard(int tr,int tc,int dr,int dc,int size)
{
	int s, t;
	if(size <2)
		return;
	amount = amount + 1;
	t = amount;
	s = size / 2;
	if (dr < tr + s&&dc < tc + s)
	{
		tileBoard(tr, tc, dr, dc, s);
		array[tr + s - 1][tc + s] = t;
		array[tr + s][tc + s - 1] = t;
		array[tr + s][tc + s] = t;
		tileBoard(tr, tc+s, dr+s-1, dc+s, s);
		tileBoard(tr+s, tc, dr+s, dc+s-1, s);
		tileBoard(tr+s, tc+s, dr+s, dc+s, s);
		
	}
	else if (dr < tr + s&&dc >= tc + s)
	{
		tileBoard(tr, tc+s, dr, dc, s);
		array[tr + s - 1][tc + s-1] = t;
		array[tr + s][tc + s - 1] = t;
		array[tr + s][tc + s] = t;
		tileBoard(tr, tc , dr + s - 1, dc + s-1, s);
		tileBoard(tr + s, tc, dr + s, dc + s - 1, s);
		tileBoard(tr + s, tc + s, dr + s, dc + s, s);
	}
	else if (dr >=tr + s&&dc < tc + s)
	{
		tileBoard(tr+s, tc, dr, dc, s);
		array[tr + s - 1][tc + s-1] = t;
		array[tr + s -1][tc + s] = t;
		array[tr + s][tc + s] = t;
		tileBoard(tr, tc , dr + s - 1, dc + s-1, s);
		tileBoard(tr, tc+s, dr + s-1, dc + s , s);
		tileBoard(tr + s, tc + s, dr + s, dc + s, s);

	}
	else if (dr >=tr + s&&dc >= tc + s)
	{
		tileBoard(tr+s, tc+s, dr, dc, s);
		array[tr + s - 1][tc + s-1] = t;
		array[tr + s-1][tc + s] = t;
		array[tr + s][tc + s-1] = t;
		tileBoard(tr, tc, dr + s - 1, dc + s-1, s);
		tileBoard(tr + s, tc+s, dr + s-1, dc + s , s);
		tileBoard(tr + s, tc + s, dr + s, dc + s-1, s);

	}
}
void Test1()
{
	/*int a = 1;
	char b = 2;
	short c = 4;*/
	
	tileBoard(0, 0,0,0,8);
	Print(8);
}

运行结果:

wKiom1cTcuvzWcmOAAAfNKRIgEg047.png